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Introduction 
The ordinary least squares (OLS) regression often utilized in educational studies in developing 
predictive and explanatory models when cases/subjects are independent of each other. When this 
assumption is violated (e.g., subjects within a nested structure), OLS regression underestimates 
standard error estimates, which may lead the researcher to incorrectly conclude regression 
coefficient significant (Ethington, 1997). Hierarchical linear models (HLM) (also known as 
random coefficient models (Rosenberg, 1973), multilevel linear models (Mason et. al. 1984), or 
mixed linear models (Goldstein, 1986)) was developed to account for dependence among 
individuals within groups. HLM allows for “1) improved estimation of effects within individual 
units, 2) the formulation and testing of hypothesis about cross-level effects and 3) the partition of 
variance and covariance components among levels (Raudenbush & Bryk, 2002, p.7).” The 
purpose of this document is to provide a guide for users in developing a hierarchical linear model 
involving subjects within a nested structure (e.g., students within a school).  
 
Engineering Education Example 
Each section of this guide examines the steps in developing a hierarchical linear model utilizing 
the mixed linear procedure in SAS (proc mixed), SPSS (mixed), and STATA (xtmixed). To aid 
the process, I will explore which organizational (second level) and individual (first level) 
variables influence engineering students’ interactions with their professors. The dataset utilized 
in the example was developed for the Engineering Change (EC2000) project sponsored by 
ABET and the National Science Foundation (Grant No. EEC-9812888) and conducted by faculty 
members in the Center for the Study of Higher Education (CSHE) at the Pennsylvania State 
University (Lattuca, Terenzini, & Volkwein, 2006). This nationally representative database 
contains 4,461 survey responses from engineering graduates of the class of 2004 in seven 
engineering disciplines (aerospace, chemical, civil, computer, electrical, industrial, and 
mechanical) in 39 different accredited engineering institutions. The sample of colleges and 
universities included Doctoral, Master’s, and Bachelors’ and Specialized Institutions. 
 
The dependent measure for this model consist of students’ responses to a 5-item scale assessing 
how often things occurred in their classes such as “Instructors gave me frequent feedback on my 
work;” “Instructors gave me detailed feedback on my work;” “Instructors guided students’ 
learning activities rather than lecturing or demonstrating the course material;” “I interacted with 
instructors as part of the course;” “I interacted with instructors outside of class (including office 
hours, advising, socializing, etc.)” (Lattuca, Terenzini, Volkwein, 2005). This interaction 
construct has an alpha reliability of .87. Appendices 1 and 2 provides a list of variables and their 
descriptive statistics examined for this model. 
 
The research question for our example is to investigate which organizational characteristics and 
individual characteristics influence engineering student’s interactions with their professors. 
 
Guide Notation 
Table 1 provides HLM notation utilized throughout this guide. The x variables are usually 
associated with level-1 characteristics (e.g., students in our example) and w variables are 
associated with level-2 characteristics (e.g., engineering institutions in our example). Within the 
mixed procedure for SAS and SPSS, the user can specify the type of variable, which is the 
reason for differentiating between categorical (xcati and wcatk) and continuous variables (xcontj and 
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wcontl), which is not a common HLM notation. For STATA, categorical variables must be coded 
as indicator variables; whereas in SAS and SPSS, categorical variables can either be coded as 
indicator variables or be kept in its original format. For example, an engineering discipline 
variable has the following values: aerospace, chemical, civil, computer, electrical, industrial and 
mechanical (seven possible values). In SAS and SPSS, an engineering discipline variable would 
suffice (as long as your properly classify it as categorical variable in the mixed procedure). 
However, for STATA, the user must choose to create six indicator variables (e.g., aerospace, 
chemical, civil, computer, electrical, and industrial with mechanical being the reference group), 
where 1 equals student is in that major and 0 equals students is not in that major. If all the 
indicators are set to zero, then the student would be majoring in mechanical engineering.   
 
Table 1: HLM Notation 
Yij Dependent Measure of the ith individual within the jth organization 
xcati ith categorical variable for level-1 
xcontj jth continuous variable for level-1 
wcatk kth categorical variable for level-2 
wcontl lth continuous variable for level-2 
βqj The intercept and regression coefficients representing the effects of the 

level-1 independent variables on Yij in the jth organization 
γqs The intercept and regression coefficients representing the fixed effects of 

the level-1 and level-2 independent variables on Yij 
μqj Represents random error associated with the level-2 model with a normal 

distribution (N (0, τqq)) 
rij Represents random error associated with the level-1 model with a normal 

distribution (N(0, σ2)) 

.  Group mean (the variable average of all the subjects within the jth 
organization) 

.. Grand mean (the variable average of all the subjects) 
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The One-way ANOVA (Unconditional Model) 
The unconditional model is essentially a one-way ANOVA testing whether differences exists for 
the dependent variables between cluster units (e.g., organizations). The general model is: 
 Yij = μ + αj + rij           (1) 
 
where μ is the grand mean (the cluster unit mean and not the subject mean) of the dependent 
measure (Yij), αj  ~ iid N(0, τ00) and rij  ~ iid N(0, σ2). αj is the average contribution of the jth 
cluster unit to the dependent measure where the variability between organizations is τ00. rij  is the 
residual associated with the ith subject within the jth cluster unit. These residuals are assumed to 
be normally distributed with a variance of σ2. In general, the main purpose of building statistical 
models is to reduce the residuals’ variability (i.e., we want σ2 to be relatively small) in order to 
increase the model’s predictability or explanatory power. Having a large residual variability 
suggests that much of the differences between the cluster units is left unexplained.  
  
The following equations, decomposes the general model (equation 1) into two levels.  
 Level-1 Model: 
 Yij = β0j + rij             (2) 
 
The dependent value (Yij ) is the measure for the ith subject within the jth cluster. rij  is the 
residual of the ith subject within the jth cluster and is normally distributed with zero mean and a 
variance of σ2 (N(0, σ2)).  σ2 is a measure of variability among the subjects within the cluster 
units (i.e., subjects are nested within the organizations). β0j is the intercept and the mean for the 
jth cluster unit and is modeled as a level-2 variable. 
 
Level-2 Model: 
 β0j  = γ00 + μ0j          (3) 
 
where γ00  is the mean of the cluster units and μ0j  are the random deviations that are normally 
distributed with a variance of τ00 (N(0, τ00)). μ0j  may be considered the residuals of the cluster 
units or the difference between a cluster unit’s mean (i.e., the average of all the subjects’ 
dependent measures within the cluster unit) and the mean of the cluster units’ means. In other 
words, τ00 is the variability of the means between cluster units. 
 
The combined model derives from substituting the level-2 model (β0j ) into the level-1 model’s 
equation: 
 Yij = γ00 + μ0j + rij            (4) 
 
where μ0j  (the residuals of the cluster units) is normally distributed with zero mean and a 
variance of τ00 (N(0, τ00)) and rij  (the residuals of the subjects within the cluster units) is 
normally distributed with zero mean and a variance of σ2  (N(0, σ2)). γ00 corresponds to the μ and 
μ0j to the αj  in the general model (equation1). This model can be split into two components, 
fixed (γ00) and random (μ0j and rij ). The γ00 is fixed because it does not vary from subject to 
subject or cluster to cluster; whereas μ0j varies from cluster unit to cluster unit and rij varies from 
subject to subject within cluster units.   
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Model Evaluation 
Thus, the unconditional model partitions the variance into two components: 1) variance 
associated to cluster units (variance between cluster units - τ00) and 2) variance associated to 
individuals within cluster units (variance within cluster units - σ2). The intraclass correlation is 
the proportion of variance explained in the dependent measure (Y) by the clusters (the values for 
j) with respect to the total variance (variance between clusters and variance within cluster). The 
intraclass correlation ( ̂ ) is calculated as 
 

          (5) 

 
When examining the unconditional model, we are determining whether HLM is an appropriate 
model by examining the significance of τ00 and its relative contribution to the overall model. The 
intraclass correlation is a measure that examine whether the portion of variance existing between 
clusters (i.e., τ00 is large with respect to σ2) justify utilizing HLM to account for cluster unit’s 
effects. One reason in utilizing HLM is to account for dependencies between subjects within a 
cluster unit; however, if little variance is attributed to the cluster unit (i.e., either τ00 is not 
significant or ̂ is small) then multiple regression is sufficient, because these methods are fairly 
robust when model assumptions (such as independence) are violated (Ethington, 1997). This also 
suggests that the majority of variance is attributed to differences between subjects with minimal 
influence attributed to the cluster unit. 
 
Mixed Procedure for Unconditional Model 
Identifying the random and fixed components of the model is important (Table 2), when utilizing 
the mixed procedure in SAS and SPSS (Figure 1). Both programs utilize a line for the user to 
specify the random effects. The default settings for both program has the intercept included as a 
fixed effect, thus, there is no need to specify it in the code (for SAS this is the “model” line and 
for SPSS this is the “/Fixed” line).    
 
Table 2: Random and Fixed Components of the Unconditional Model 

Model 
Components 

Type of 
Variable 

Interpretation 

γ00 Fixed γ00 is the mean of the cluster units’ mean. 
μ0j Random μ0j is the difference between the cluster unit mean (average of 

the subject scores within the cluster) and the mean of the cluster 
units’ means after accounting for the level-2 predictors. A 
significant variance (τ00) implies that the intercepts differ 
between organizations. 

rij   Random rij  is the residual of the subject’s score after accounting for the 
cluster’s effect (μ0j). 
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Figure 1: Software Code for the Unconditional Model 
SAS proc mixed data=DATA noclprint covtest ; 

 class Cluster Unit; 
 model Yij = /solution; 
 random intercept/sub= Cluster Unit;; 
run; 

SPSS MIXED 
 Yij 
  /CRITERIA = CIN(95) MXITER(100) MXSTEP(5) 
SCORING(1) SINGULAR(0.000000000001) 
HCONVERGE(0, ABSOLUTE) LCONVERGE(0, 
ABSOLUTE) 
  PCONVERGE(0.000001, ABSOLUTE) 
  /FIXED = | SSTYPE(3) 
  /METHOD = REML 
  /PRINT = SOLUTION TESTCOV 
 /RANDOM INTERCEPT  | SUBJECT(Cluster Unit;) 
COVTYPE(UN) . 

STATA xtmixed Yij || Cluster Unit:, reml variance 
 
Engineering Instructor Interaction Example 
For our engineering education example, we want to examine whether instructor interaction varies 
significantly from institution to institution and whether the proportion of this second level 
variance is large enough to justify the utilization of HLM. The level-1 unconditional model is 
shown below: 
 InstructorInteractionij = β0j + rij          (6) 
      
Where j = Cal State Polytechnic, Cal State Sacromento, Case Western, … , Texas A & M, and 
MIT and i = 1, 2, …, ninstitution. In other words, i is the ith student within the institution, where n 
equal the number of student responses within an institution (see Appendix 2 for the n’s of each 
institution). The residual (rij ) is normally distributed with zero mean and a variance of σ2.  
 
The level two model is: 
  
  β0j  = γ00 + μ0j         (7) 
 
where γ00  is the mean of the institutions’ means on instructor interactions (i.e., average of the 
instructor interaction within the institution) and μ0j is the deviation of the jth institution from the 
grand mean. μ0j is assumed to be normally distributed with a variance of τ00 (N(0, τ00)). In other 
words, τ00 is the variability of the instructor interaction means between the institutions.  
 
Substituting equation 6 into 5, the complete model is 
 
 InstructorInteractionij = γ00 + μ0j + rij         (8) 
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γ00 is the grand mean (i.e, the mean of the institutions’ means on instructor interactions); μ0j is the 
deviation of the jth institution; and rij is the residual of the ith student within the jth institution. 
Figure 2 provides the SAS, SPSS, and STATA code for this example.  
 
Figure 2: Code for the Engineering Education Example (Unconditional Model) 

SAS proc mixed data=ABET noclprint covtest ; 
 class Institution; 
 model InstructorInteraction = /solution; 
 random intercept/sub=Institution; 
run; 

SPSS MIXED 
  InstructorInteraction 
  /CRITERIA = CIN(95) MXITER(100) MXSTEP(5) 
SCORING(1) SINGULAR(0.000000000001) 
HCONVERGE(0, ABSOLUTE) LCONVERGE(0, 
ABSOLUTE) 
  PCONVERGE(0.000001, ABSOLUTE) 
  /FIXED = | SSTYPE(3) 
  /METHOD = REML 
  /PRINT = SOLUTION TESTCOV 
 /RANDOM INTERCEPT  | SUBJECT(Institution) 
COVTYPE(UN) . 

STATA xtmixed InstructorInteraction || institution:, reml variance 
 
Engineering Instructor Interaction Results 
The τ00 and σ2 estimates are found under the section “Covariance Parameter Estimates” for SAS1, 
“Estimates of Covariance Parameters” for SPSS2, and “Random-effects Parameters” for STATA 
(Figure 3). The parameter estimates from all programs are the same with τ00 equal to .09957 with 
a p-value less than .0001 (see yellow highlight in Figure 3) and σ2 is .4194 p-value less than 
.00013 and both are significant at an alpha of .014. Since τ00 is significant, the intercepts in the 
model varies from one institution to another. Consequently, this suggests that instructor 
interaction differ between institutions.  
 
The intraclass correlation ( ̂ ) is .19 (.09957/ (.09957+ .4194)). Hence the proportion of 
variation in instructor interaction between schools is 19 percent. Since the intraclass correlation 
is greater than .05, HLM would be an appropriate statistical technique (Porter, 2005).  
  

                                                 

1 If “Covariance Parameter Estimates” is not found in the output, check to see if “covtest” is included in the proc 
mixed statement. 
2 If “Estimates of Covariance Parameters” is not found in the output, check to see if “testcov” is included in the print 
line in the mixed procedure syntax. 
3 SPSS provides the p-value for a 1-tail test; divide this value by 2 to get the same value as the SAS output 
4 STATA and SPSS provide 95% confidence intervals. If the confidence interval does not include zero (0), then the 
variance is significant at an alpha of .05 (1-.95). 
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Figure 3: Estimates of Covariance Parameters for Unconditional Model 
SAS Output                           

Covariance Parameter Estimates 
                                                      Standard         Z 
             Cov Parm      Subject        Estimate       Error     Value        Pr Z 
 
             Intercept     Institution     0.09957     0.02497      3.99      <.0001 
             Residual                       0.4194    0.008922     47.01      <.0001 
 
SPSS Output 
Covariance Parameters 
 Estimates of Covariance Parameters(a) 

Parameter Estimate
Std. 

Error Wald Z Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Residual .419404 .008922 47.010 .000 .402278 .437260
Intercept 
[subject = 
Institution] 

Variance 
.099571 .024967 3.988 .000 .060912 .162767

a  Dependent Variable: INTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
STATA Output                              
 
------------------------------------------------------------------------------ 
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval] 
-----------------------------+------------------------------------------------ 
institution: Identity                 | 
                  var(_cons)             |   .0995705   .0249666      .0609113    .1627658 
-----------------------------+------------------------------------------------ 
                  var(Residual)        |   .4194015   .0089216       .402275    .4372571 
------------------------------------------------------------------------------ 
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The fixed effects for the unconditional model can be found under the “Solution for Fixed 
Effects” in SAS output, “Estimates of Fixed Effects” in SPSS output, and “interaction” (the 
name of the dependent variable) in STATA output (Figure 4). The institutional mean estimate 
(γ00) for instructor interaction is 2.3213 (p-value is .0000), which is significant at an alpha of .01. 
    
Figure 4: Parameter Estimates for Unconditional Model 
SAS Output                                    

Solution for Fixed Effects 
                                           Standard 
                Effect         Estimate       Error      DF    t Value    Pr > |t| 
 
                Intercept        2.3213     0.05210      38      44.56      <.0001 
SPSS Output 

Type III Tests of Fixed Effects(a) 
 

Source 
Numerator 

df 
Denominator 

df F Sig. 
Intercept 1 35.788 1985.162 .000

a  Dependent Variable: INSTRUCTORINTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
 
 Estimates of Fixed Effects(a) 

Parameter Estimate 
Std. 

Error df t Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Intercept 2.321300 .052099 35.788 44.555 .000 2.215616 2.426985
a  Dependent Variable: INSTRUCTORINTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
STATA Output     
------------------------------------------------------------------------------ 
 interaction |      Coef.       Std. Err.      z         P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons   |   2.321305   .0520993    44.56   0.000     2.219193    2.423418 
------------------------------------------------------------------------------ 
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The SAS and SPSS information criteria5 output are all equal for the -2 restricted log likelihood, 
Akaike’s information criterion (AIC), and Hurvich and Tasi’s Criterion (AICC) ( 
Figure 5). The Schwarz’s Bayesian Criterion (BIC) is slightly different and may be to differences 
in the software’s algorithms. The information from these fit statistics will be useful when 
comparing models involving instructor interaction. 
 
Figure 5:  Information Criteria 
SAS Output                                     

Fit Statistics 
                              -2 Res Log Likelihood          8906.9 
                              AIC (smaller is better)        8910.9 
                              AICC (smaller is better)       8910.9 
                              BIC (smaller is better)        8914.2 
SPSS Output 

Information Criteria(a) 
-2 Restricted Log 

Likelihood 
8906.914

Akaike's 
Information 

Criterion (AIC) 
8910.914

Hurvich and 
Tsai's Criterion 

(AICC) 
8910.917

Bozdogan's 
Criterion (CAIC) 

8925.720

Schwarz's 
Bayesian 

Criterion (BIC) 
8923.720

The information criteria are displayed in smaller-is-better forms. 
a  Dependent Variable: INSTRUCTORINTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 

                                                 

5 For Stata, use the command “estat ic” after running the xtmixed command. 
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Including Effects of Level-2 Predictors 
When examining the effects of the second level predictors, the goal is to determine whether the 
cluster unit characteristic (second level predictor wconti and wcati) has a statistical significant 
influence on the dependent measure (Yij). Thus, the level-1 model is the same as the 
unconditional model’s level-1: 
 
 Yij = β0j + rij             (9) 
 
The dependent value (Yij ) is the measure for the ith subject within the jth cluster. rij  is the 
residual of the ith subject within the jth cluster and is normally distributed with zero mean and a 
variance of σ2 (N(0, σ2)). However, because cluster predictors are included the level-2 model 
becomes: 
 
 β0j  = γ00 + γ0cat1  * wcat1 + …  + γ0n * wcatn +  
   γ0cont1  * wcont1 + …  + γ0contm  * wcontm + μ0j     (10) 
 
where γ00  is the mean of the treatments for the reference group(s) of the categorical predictor(s) 
and/or when the continuous predictors are equal to zero (wcont1, … , wcontm). The deviations or 
residuals of the cluster units (μ0j) are random and normally distributed with a variance of τ00 
(N(0, τ00)). Thus, τ00 is the variability of the means between treatments after accounting the 
cluster unit’s predictor variables (wcat1, …, wcatn, wcont1, … , wcontm).  
 
The combined model derives from substituting the level-2 model (10) into the level-1 model’s 
equation (9): 
 

Yij = γ00 + γ0cat1  * wcat1 + …  + γ0n * wcatn + 
   γ0cont1  * wcont1 + …  + γ0contm  * wcontm +  μ0j + rij       (11) 
 
Model Evaluation 
The “proportion reduction in variance” or “variance explained” (Raudenbush & Bryk, 2002, p. 
74) measures the amount of variance explained by the level-2 predictors that is attributed to the 
cluster units. When creating and evaluating a model that includes level-2 predictors, the goal is 
to reduce the level-2 variability (τ00) from the unconditional model to a model including level-2 
predictors. The proportion reduction in variance is: 
 

 = 
      

 
        (12) 

 
The possible values for this measure are between one and zero, where a value of one (1) suggests 
that the level-2 predictors explains all the variance attributed to the cluster unit and a value of 
zero (0) suggests the level-2 predictors explains none of the variance attributed to the cluster 
unit.   
 
The other goal when evaluating a model with level-2 predictors is to examine the significance of 
the variance of the cluster unit’s residuals (τ00). If τ00 is not significant, the level-2 predictors in 
the model explain most of the variance associated with the cluster units. 
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Similar to an OLS, the next step is to evaluate the significance of the level-2 predictors. The null 
hypothesis is that the γqs is equal to zero (Ho: γqs = 0), while the alternative hypothesis is that the 
γqs is not equal to zero (Ha: γqs ≠ 0). If these parameter estimates (γ0cat1, …, γ0catn, γ0cont1, … ,  γ0contm) 

are significant, the associated predictors are likely to be included in the final model.  
 
Mixed Procedure for Model with Level-2 Predictors 
Identifying the random and fixed components of the model is important (Table 3), when utilizing 
the mixed procedure in SAS, SPSS, and STATA (Figure 6). Both programs utilize a line 
(“random” in SAS and “/random” in SPSS) for the user to specify the random effects; while for 
STATA, the random effects are specified after declaring the nested structure (“|| cluster unit;”). 
The default settings for all three programs has the intercept included as a fixed effect, thus, there 
is no need to specify it in the code (for SAS this is the “model” line and for SPSS this is the 
“/Fixed” line).    
 
Table 3: Random and Fixed Components of a Model with Level-2 Predictors 

Model 
Components 

Type of 
Variable 

Interpretation 

γ00 Fixed γ00 is the mean of the cluster units’ mean for the reference 
group(s) of the categorical predictor(s) and/or when the 
continuous predictors are equal to zero. 

γ cati0  * wcati Fixed γ cati0  is the contribution of a categorical level-2 predictor to the 
dependent measure. A significant γ cati0 implies that the level-2 
predictor should be included in the final model. 

γcontj0  * wcontj Fixed γcontj  is the contribution of a continuous level-2 predictor to the 
dependent measure. A significant γcontj0 implies that the level-2 
predictor should be included in the final model. 

μ0j Random μ0j is the difference between the cluster unit mean (average of 
the subject scores within the cluster) and the mean of the cluster 
units’ means after accounting for the level-2 predictors. A 
significant variance (τ00) implies that the intercepts differ 
between organizations. 

rij   Random rij  is residual of the subject’s score after accounting for the 
cluster’s effect (μ0j) and the level-2 predictors.    
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Figure 6: Software Code for Model with Only Level-2 Predictors 
SAS proc mixed data=DATA noclprint covtest ; 

 class Cluster Unit wcat1  … wcatn ; 
 model Yij = wcat1  … wcatn wcont1 ... w2contm  /solution ddfm=bw; 
 random intercept/sub= Cluster Unit; 
run; 

SPSS MIXED 
  Yij  BY wcat1  … wcatn WITH wcont1 ... w2contm   
  /CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1) 
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) 
LCONVERGE(0, ABSOLUTE) 
  PCONVERGE(0.000001, ABSOLUTE) 
  /FIXED = wcat1  … wcatn wcont1 ... w2contm  | SSTYPE(3) 
  /METHOD = REML 
  /PRINT = SOLUTION TESTCOV 
 /RANDOM INTERCEPT  | SUBJECT(Cluster Unit) COVTYPE(UN) 
. 

STATA xtmixed  Yij  wcat1  … wcatn wcont1 ... w2contm || Cluster Unit:, 
covariance(unstructured) reml variance 

 

Engineering Instructor Interaction Example 
For our engineering education example, we want to examine which organizational characteristics 
(level-2 predictors) influences interactions between instructors and students between institutions. 
For this example, we will be examining whether an institution’s Carnegie classification (research 
intensive, research extensive, masters’ and bachelor’s/other) influences instructor interactions. 
The level-1 model is shown below: 
 

 InstructorInteractionij = β0j + rij          (13) 
 

Where j = Cal State Polytechnic, Cal State Sacramento, Case Western, … , Texas A & M, and 
MIT and i = 1, 2, …, ninstitution. In other words, i is the ith student within the institution, where n 
equal the number of student responses within an institution (see Appendix 2 for the n’s of each 
institution). The residual (rij ) is normally distributed with zero mean and a variance of σ2.  
 

Level-2 Model: 
 β0j  = γ00 + γ0carn_cat * carn_cat+ μ0j       (14) 
 

where γ00  is the mean of the institutions’ means on instructor interactions (i.e., average of the 
instructor interaction within the institution) at bachelors/others universities and μ0j is the 
deviation of the jth institution from the conditional mean. μ0j is assumed to be normally 
distributed with a variance of τ00 (N(0, τ00)). In other words, τ00 is the variability of the instructor 
interaction means between the institutions after accounting for the Carnegie classification6.  

                                                 

6 Since Carnegie classification is a categorical variable, the output will estimate n-1 γ0cat1’s, where n is the number of 
levels within the categorical variable (for this example, n is 4). The user can recode a categorical variable into n-1 
indicator variables. For SAS and SPSS, the default reference group is the last category; however, in SAS, the user 
can classify the reference group in the class statement by utilizing the following command (ref=). 
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Substituting equation 14 into 13, the complete model is 
  
 InstructorInteractionij = γ00 + γ0cat1 * carn_cat + μ0j + rij       (15) 
 
γ00 is mean of the institutions’ means on instructor interactions at research institutions (which 
was the reference group for the carnegie classification variable); γ0cat1 is the contribution to the 
instructor’s interaction score at a certain Carnegie classification, μ0j is the deviation of the jth 
institution after accounting for the Carnegie classification; and rij is the residual of the ith student 
within the jth institution after accounting for the Carnegies classification. Figure 7 provides the 
SAS, SPSS, and STATA code for this example.  
 
Figure 7: Code for the Engineering Education Example (With Level-2 Predictors) 

SAS proc mixed data=ABET noclprint covtest ; 
 class Institution carn_cat ; 
 model InstructorInteraction = carn_cat /solution ddfm=bw; 
 random intercept/sub=Institution; 
run; 

SPSS MIXED 
  InstructorInteraction BY carn_cat 
  /CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1) 
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) 
LCONVERGE(0, ABSOLUTE) 
  PCONVERGE(0.000001, ABSOLUTE) 
  /FIXED = carn_cat  | SSTYPE(3) 
  /METHOD = REML 
  /PRINT = SOLUTION TESTCOV 
 /RANDOM INTERCEPT  | SUBJECT(Institution) COVTYPE(UN) . 

STATA xtmixed InstructorInteraction carn_cat_1 carn_cat_2 carn_cat_3 || institution:, 
covariance(unstructured) reml variance 

 
Engineering Instructor Interaction Results 
The τ00 and σ2 estimates are found under the section “Covariance Parameter Estimates” for SAS7, 
“Estimates of Covariance Parameters” for SPSS8, and “Random-effects Parameters” for STATA 
(Figure 8). The parameter estimates from all programs are the same with τ00 equal to .03604 with 
a p-value of .0003 (see yellow highlight in Figure 8) and σ2 is .4195 with a p-value less than 
.00019; both are significant at an alpha of .0110.  
 

                                                 

7 If “Covariance Parameter Estimates” is not found in the output, check to see if “covtest” is included in the proc 
mixed statement. 
8 If “Estimates of Covariance Parameters” is not found in the output, check to see if “testcov” is included in the print 
line in the mixed procedure syntax. 
9 SPSS provides the p-value for a 1-tail test; divide this value by 2 to get the same value as the SAS output 
10 STATA and SPSS provide 95% confidence intervals. If the confidence interval does not include zero (0), then the 
variance is significant at an alpha of .05 (1-.95). 
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The proportion of the variance explained by the institution’s Carnegie classification is 64 percent 
((.099571-.03604)/.099571, where .099571 is the τ00 of the unconditional model calculated in the 
previous section). This implies that 64 percent of the variance in the means of the institution’s 
interaction between instructors and students (i.e., the group mean of the instructor interactions) 
can be explained by the institution’s Carnegie classification. This does not imply that the 
Carnegie classification explains 64 percent of the variance in interaction measure for all students.  
 
Since τ00 is significant, 36 percent (100-64) of the unexplained variance is associated with the 
cluster unit that may be described by other level-2 predictor(s).   
 
The intraclass correlation ( ̂ ) is .079 (.03604/ (.03604+ .4195)); the proportion of variation in 
instructor interaction between schools having the same classification is 7.9 percent. 
 
Figure 8: Estimates of Covariance Parameters for Model with Only Level-2 Predictors 
SAS Output               

Covariance Parameter Estimates 
                                                      Standard         Z 
             Cov Parm      Subject        Estimate       Error     Value        Pr Z 
 
             Intercept     Institution     0.03604     0.01054      3.42      0.0003 
             Residual                       0.4195    0.008925     47.00      <.0001 
SPSS Output 
Covariance Parameters 
Estimates of Covariance Parameters(a) 

Parameter Estimate
Std. 

Error Wald Z Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Residual .419497 .008925 47.001 .000 .402363 .437360
Intercept 
[subject = 
Institution] 

Variance 
.036039 .010541 3.419 .001 .020315 .063936

a  Dependent Variable: INTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
STATA Output                              
------------------------------------------------------------------------------ 
  Random-effects Parameters        |   Estimate      Std. Err.      [95% Conf. Interval] 
-----------------------------+------------------------------------------------ 
institution: Identity                          | 
                     var(_cons)                     |   .0360398   .0105412       .020315    .0639365 
-----------------------------+------------------------------------------------ 
                     var(Residual)                |   .4194937   .0089253      .4023603    .4373568 
------------------------------------------------------------------------------ 
 
The fixed effects for the model with level-2 predictors can be found under the “Solution for 
Fixed Effects” in SAS output, “Estimates of Fixed Effects” in SPSS output, and “” in STATA 
output (Figure 9). For this example, the interpretation of the intercept (γ00) is the average 
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instructor interaction at Bachelor’s institution (the reference group for the Carnegie’s variable) is 
2.9930. The average instructor interaction decreases .8612, .5350, and .5210 at a research 
extensive, research intensive, and Masters institution with respect to a Bachelor’s institution. The 
gamma estimates (γ) were all significant at an alpha of .05.  
 
Figure 9: Parameter Estimates for Model with Only Level-2 Predictors 
SAS Output                         

Solution for Fixed Effects 
                                                 Standard 
          Effect         carn_cat    Estimate       Error      DF    t Value    Pr > |t| 
 
          Intercept                    2.9930      0.1067      35      28.06      <.0001 
          carn_cat       1            -0.8162      0.1135      35      -7.19      <.0001 
          carn_cat       2            -0.5350      0.1633      35      -3.28      0.0024 
          carn_cat       3            -0.5210      0.1426      35      -3.65      0.0008 
          carn_cat       4                  0           .       .        .         . 
                                  Type 3 Tests of Fixed Effects 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
                          carn_cat        3      35      19.05    <.0001
SPSS Output 
Fixed Effects 

Type III Tests of Fixed Effects(a) 

Source 
Numerator 

df 
Denominator 

df F Sig. 
Intercept 1 35.297 2748.324 .000
carn_cat 3 35.002 19.050 .000

a  Dependent Variable: INTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
 Estimates of Fixed Effects(b) 

Parameter Estimate 
Std. 

Error df t Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Intercept 2.992996 .106667 36.967 28.059 .000 2.776862 3.209131
[carn_cat=1.00] -.816240 .113511 35.931 -7.191 .000 -1.046465 -.586015
[carn_cat=2.00] -.535025 .163291 35.564 -3.277 .002 -.866334 -.203715
[carn_cat=3.00] -.520971 .142557 36.383 -3.654 .001 -.809985 -.231957
[carn_cat=4.00] 0(a) 0 . . . . .

a  This parameter is set to zero because it is redundant. 
b  Dependent Variable: INSTRUCTORINTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
STATA Output                              
------------------------------------------------------------------------------ 
 instructorinteraction |      Coef.          Std. Err.      z        P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
  carn_cat_1 |                  -.816231   .1135109    -7.19    0.000    -1.038708   -.5937536 
  carn_cat_2 |                -.5349953   .1632911    -3.28   0.001      -.85504   -.2149507 
  carn_cat_3 |                -.5209562   .1425578    -3.65   0.000    -.8003643   -.2415481 
       _cons    |                  2.992991   .1066674    28.06   0.000     2.783927    3.202056 
------------------------------------------------------------------------------
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The SAS and SPSS information criteria11 output are all equal for the -2 restricted log likelihood, 
Akaike’s information criterion (AIC), and Hurvich and Tasi’s Criterion (AICC) (Figure 10). The 
Schwarz’s Bayesian Criterion (BIC) is slightly different and may be to differences in the 
software’s algorithms. The fit statistics will be useful when comparing models involving 
instructor interaction (Table 4). The -2 restricted log likelihood, AIC, AICC, and BIC are smaller 
for the model with only level-2 predictors, which implies this model is better than the 
unconditional (one-way Anova). 
 
Figure 10:  Information Criteria for Model with Only Level-2 Predictors 
SAS Output                              

Fit Statistics 
 
                              -2 Res Log Likelihood          8877.5 
                              AIC (smaller is better)        8881.5 
                              AICC (smaller is better)       8881.5 
                              BIC (smaller is better)        8884.8 
SPSS Output 

Information Criteria(a) 
-2 Restricted Log 

Likelihood 
8877.489

Akaike's 
Information 

Criterion (AIC) 
8881.489

Hurvich and 
Tsai's Criterion 

(AICC) 
8881.492

Bozdogan's 
Criterion (CAIC) 

8896.294

Schwarz's 
Bayesian 

Criterion (BIC) 
8894.294

The information criteria are displayed in smaller-is-better forms. 
a  Dependent Variable: INSTRUCTORINTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 

 
Table 4: Comparing Unconditional Model and Model with only Level-2 Predictors 

Information Criteria Unconditional Model Model with only level-2 
Predictors 

-2 Res Log Likelihood 8906.914 8877.489 
AIC 8910.914 8881.489 

AICC 8910.917 8881.492 
CAIC 8925.720 8896.294 
BIC 8923.720 8894.294 

                                                 

11 For Stata, use the command “estat ic” after running the xtmixed command. 
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 The Random-Coefficient Model (Level-1 Variables) 
For the random-coefficient model, the researcher is examining whether the level-1 predictors 
have a significant influence on the dependent measure (the fixed component of the model) and 
whether these influences differ between cluster units (the random component of the model). 
Thus, the level-1 model appears very similar to a traditional OLS regression model:  
 
Level-1 Model: 
 Yij = β0j + βcat1j  * xcat1 + … + βcatnj  * xcatn  

  + βcont1j  * xcont1  + … + βcontmj  * xcontm + rij        (16) 
 
The dependent value (Yij ) is the measure for the ith subject within the jth cluster unit. rij  is the 
residual of the ith subject within the jth cluster unit and is normally distributed with zero mean 
and a variance of σ2 (N(0, σ2)) after accounting for the level-1 predictors. The β’s in the level-1 
model are 
 
Level-2 Model: 
 β0j  = γ00 + μ0j          (17) 

 βcat1j = γcat10 + μcat1j         (18) 

 … 

 βcatnj  = γcatn0 + μ catnj         (19) 
 βcont1j = γcont10 + μcont1j         (20) 
 … 
 βcontmj  = γcont10 + μcontmj        (21) 
  
where the γ’s  (γ00, γcat10, … ,  γcatn0, γcont10,…, γcont10)  is the average intercept/or slope across the 
cluster units and μqj’s  (i.e., μ0j , μcat1j, … , μ catnj,  μcont1j, … , μcontmj ) are the random deviations 
that are normally distributed with a variance of τqq (N(0, τqq)). μjj’s are interpreted as the unique 
contributions (or residual) of the jth cluster unit to the β’s, where τqq’s is the variability of these 
unique contributions between cluster units. This model is known as the random-coefficient 
model, since the coefficients may vary from cluster unit to cluster unit (i.e., the β’s may have 
different values depending on the subject’s cluster unit). In contrast, differences between cluster 
units are not accounted for in an OLS regression model; thus, the β’s in that model do not vary 
from subject to subject. If the β’s associated τqq is significant, then the researcher needs to model 
the coefficient as random.  
 
Substituting equations 17 through 21 into equation 16, the combined model is 
 
 Yij = γ00 + μ0j + (γ cat10 + μcat1j)* xcat1 + … + (γcatn0 + μcatnj)* xcatn  

  + (γcont10 + μcont1j )* xcont1  + … + (γcontm0 + μcontmj)* xcontm  

  + rij            (22) 
 Yij = γ00  +  γ cat10 * xcat1 + … + γcatn0 * xcatn  
  + γcont10 * xcont1 + …+  γcontm0 * xcontm 

  + μcat1j * xcat1 + …+  μcatnj * xcatn  
  + μcont1j * xcont1 + …+ μcontmj * xcontm + rij        (23) 
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Model Evaluation 
The “proportion reduction in variance” or “variance explained” (Raudenbush & Bryk, 2002, p. 
74) measures the amount of variance explained by the level-1 predictors. When creating and 
evaluating a model that includes level-1 predictors, the goal is to reduce the residual’s variance 
in the level-1 model (σ2) from the unconditional model to a model including level-1 predictors. 
The proportion reduction in variance is: 
 

 = 
     

 
        (24) 

 
The possible values for this measure are between one and zero, where a value of one (1) suggests 
that the level-1 predictors explains all the variance attributed to the subject and a value of zero 
(0) suggests the level-1 predictors explains none of the variance attributed to the subject.   
 
The other goal when evaluating a model with level-1 predictors is to determine whether the 
associated β is varying between cluster units or not. If the associated variance (τqq) is significant, 
then the coefficient needs to be modeled as random (e.g., equations 17, 18, 19, 20, 21).  If τqq  is 
not significant, the regression coefficient should be modeled as fixed (e.g., β = γ). 
 
Similar to an OLS, the next step is to evaluate the significance of the level-1 predictors. The null 
hypothesis is that the γqs is equal to zero (Ho: γqs = 0), while the alternative hypothesis is that the 
γqs is not equal to zero (Ha: γqs ≠ 0). If these parameter estimates (γ0cat1, …, γ0catn, γ0cont1, … ,  γ0contm) 

are significant, the associated predictors are likely to be included in the final model  
 
Mixed Procedure for Unconditional Model 
Table 5 lists the fixed and random components of a random-coefficient model. Identifying these 
components will be helpful when utilizing the mixed linear procedures for SAS, SPSS, and 
STATA (Figure 11). 
  
Table 5: Random and Fixed Components of a Random-coefficient Model 

Model 
Components 

Type of 
Variable 

Interpretation 

γ00 Fixed Mean of the cluster units’ mean for the reference group(s) of the 
categorical predictor(s) and/or when the continuous predictors 
are equal to zero 

γ catl0 * xcatl Fixed Contribution of a categorical level-1 predictor to the dependent 
measure. A significant γ catl0 implies that the variable should be 
included in the final model. 

γcontk0 * xcontk Fixed Contribution of a continuous level-1 predictor to the dependent 
measure. A significant γ contk0 implies that the variable should be 
included in the final model. 

μcatlj * xcatl Random μcatlj is the unique increment of the slope for variable xcatl 
associated with the jth cluster. The variance and its significance 
of this statistic is important (τqq). A significant variance implies 
that the slope for this variable differs significantly between 
organizations. 
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Table 3: Random and Fixed Components of a Model with Level-2 Predictors (con’t) 
Model 

Components 
Type of 
Variable 

Interpretation 

μcontkj * xcontk Random μcatlj is the unique increment of the slope for variable xcontk 
associated with the jth cluster. The variance and its significance 
of this statistic is important (τqq). A significant variance implies 
that the slope for this variable differs significantly between 
organizations. 

μ0j Random μ0j  is the difference between the cluster unit mean (average of 
the subject scores within the cluster) and the mean of the cluster 
units’ means after accounting for the level-1 predictors. The 
variance and its significance of this statistic is more important 
(τ00). ). A significant variance implies that the intercepts for this 
model differs significantly between organizations. 

rij   Random Residual of the subject’s score after accounting for the cluster’s 
effect (μ0j) and the level-1 predictors. The variance and its 
significance of this statistic is more important (σ2).    

 
Figure 11: Software Code for the Random-coefficient Model 

SAS proc mixed data=DATA noclprint covtest ; 
 class Cluster Unit xcat1  … xcatn; 
 model Yij = xcat1  … xcatn xcont1 ... xcontm  /solution ddfm=bw; 
 random intercept xcat1  … xcatn xcont1 ... xcontm  /sub= Cluster Unit; 
run; 

SPSS MIXED 
  Yij  BY xcat1  … xcatn WITH xcont1 ... xcontm   
  /CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1) 
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) 
LCONVERGE(0, ABSOLUTE) 
  PCONVERGE(0.000001, ABSOLUTE) 
  /FIXED = xcat1 … xcatn xcont1 ... xcontm  | SSTYPE(3) 
  /METHOD = REML 
  /PRINT = SOLUTION TESTCOV 
 /RANDOM INTERCEPT xcat1  … xcatn xcont1 ... xcontm  | SUBJECT(Cluster 
Unit) COVTYPE(UN) . 

STATA xtmixed Yij xcat1  … xcatn xcont1 ... xcontm  || Cluster Unit: xcat1  … xcatn xcont1 ... 
xcontm  , covariance(unstructured) reml variance 

 
Engineering Instructor Interaction Example 
For the engineering education example, we will examine whether students perception of 
instructor clarity (clarity variable) influences their instructor interactions. For the random-
coefficient model, we will also examine whether students perception of clarity differs between 
institutions; which would justify modeling clarity as a random coefficient model (i.e., does the 
βclarityj vary significantly between institutions). The level-1 model for our example is: 
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 InstructorInteractionij = β0j + βclarityj  * clarity + rij        (25) 
  
The dependent value (InstructorInteractionij ) is the measure for the ith subject within the jth 
organization (e.g., j= Cal State Polytechnics, Cal State Sacramento, Case Western, …, Texas A 
& M, and MIT). rij  is the residual of the ith subject within the jth institution and is normally 
distributed with zero mean and a variance of σ2 (N(0, σ2)) after accounting for the level-1 
predictor variable (e.g., βclarityj in our example). Since, we hypothesis that clarity may differ 
between institutions, the level-2 models are: 
 
 β0j  = γ00 + μ0j          (26) 

 βclarityj = γclarityj + μclarityj        (27) 
  
where γ00  is the mean of the intercepts and μ0j  are the random deviations that are normally 
distributed with a variance of τ00 (N(0, τ00)). μ0j  may be considered the deviations away from the 
mean intercepts, where τ00 is the variability of these means between institutions. The average 
slope for clarity is γclarity and μclarityj are the unique contribution of the jth institution to the clarity 
slope. These contributions (or deviations) are normally distributed with a variance of τ11 (N(0, 
τ11)). If τ11 is significant (i.e., the value is non-zero), this implies that the students’ perception of 
clarity varies from institution to institution.  
 
Substituting equations 26 and 27 into equation 25, the combined model becomes: 
 
 InstructorInteractionij = γ00 + μ0j+ (γclarityj + μclarityj)* clarity + rij      (28)  

 InstructorInteractionij = γ00  + γclarityj * clarity  + μclarityj * clarity  + rij     (29)  
 
From equation 28, we can see that clarity needs to be specified as a fixed (γclarityj) and a random 
(μclarityj) effect in the mixed procedure in SAS, SPSS, and STATA (Figure 12). 
 
Figure 12: Code for the Engineering Education Example (Random Coefficient Model) 

SAS proc mixed data=ABET noclprint covtest ; 
 class Institution ; 
 model InstructorInteraction = clarity /solution ddfm=bw; 
 random intercept clarity/sub=Institution; 
run; 

SPSS MIXED 
  INSTRUCTORINTERACTION  WITH CLARITY 
  /CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1) 
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) 
LCONVERGE(0, ABSOLUTE) 
  PCONVERGE(0.000001, ABSOLUTE) 
  /FIXED = CLARITY  | SSTYPE(3) 
  /METHOD = REML 
  /PRINT = SOLUTION TESTCOV 
 /RANDOM INTERCEPT CLARITY  | SUBJECT(Institution) 
COVTYPE(UN) . 

STATA xtmixed interaction clarity || institution: clarity, covariance(unstructured) reml 
variance 
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Engineering Instructor Interaction Results 
The τqq’s and σ2 estimates are found under the section “Covariance Parameter Estimates” for 
SAS, “Estimates of Covariance Parameters” for SPSS, and “Random-effects Parameters” for 
STATA (Figure 13). The parameter estimates from all statistical software programs are the same 
with τ00 equal to .009537 with a p-value of .2962 (see yellow highlight in Figure 13), τ11 equal to 
.006863 with a p-value of .0400 (see green highlight in Figure 13), and σ2 is .3356 with a p-value 
less than .0001 (see grey highlight in Figure 13). τ11 and σ

2 are both significant at an alpha of .01. 
A significant σ2 implies that other level-1predicator variables exist that may decrease the residual 
variance. While a significant τ11 suggests the slope for clarity is different between institutions 
(e.g., MIT students perception of clarity may differ from students at Georgia Tech).    
 
The proportion of the variance explained by students’ perception of clarity is 20 percent ((.4194-
.3356)/.4194), where .4194 is the σ2

 of the unconditional model calculated in the previous 
section). This implies that 20 percent of the within-institution variance in the model can be 
explained by student’s perception of instructor clarity. Since σ2

 is significant, 80 percent (100-
20) of the unexplained within-student variance may be described by other level-1 predictors. 
 
Figure 13: Estimates of Covariance Parameters for the Random-coefficient Model 
SAS Output                           

Covariance Parameter Estimates 
                                                      Standard         Z 
              Cov Parm     Subject        Estimate       Error     Value        Pr Z 
              UN(1,1)      Institution    0.009537     0.01781      0.54      0.2962 
              UN(2,1)      Institution    -0.00339    0.007630     -0.44      0.6564 
              UN(2,2)      Institution    0.006863    0.003920      1.75      0.0400 
              Residual                      0.3356    0.007157     46.89      <.0001
SPSS Output 
Covariance Parameters 
 Estimates of Covariance Parameters(a) 

Parameter Estimate 
Std. 

Error Wald Z Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Residual .335602 .007157 46.891 .000 .321863 .349927
Intercept + 
CLARITY 
[subject = 
Institution] 

UN (1,1) .009539 .017811 .536 .592 .000246 .370586
UN (2,1) -.003395 .007630 -.445 .656 -.018349 .011559
UN (2,2) .006863 .003920 1.751 .080 .002240 .021022

a  Dependent Variable: INTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
STATA Output                              
------------------------------------------------------------------------------ 
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval] 
-----------------------------+------------------------------------------------ 
institution: Unstructured         | 
                var(clarity)               |   .0068621   .0039201      .0022397    .0210244 
                  var(_cons)              |   .0094539   .0177891      .0002366    .3778171 
          cov(clarity,_cons)          |  -.0033789    .007628     -.0183295    .0115717 
-----------------------------+------------------------------------------------ 
               var(Residual) |   .3356525   .0071582      .3219119    .3499797 
------------------------------------------------------------------------------ 
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The fixed effects for the random-coefficient model can be found under the “Solution for Fixed 
Effects” in SAS output, “Estimates of Fixed Effects” in SPSS output, and “Interaction” in 
STATA output (Figure 14). For this example, the interpretation of the intercept (γ00) is the 
average instructor interaction is .6080, when the clarity score is zero. The instructor interaction 
increases .5407 for every one point increases in student’s perception of clarity. The fixed effect 
for clarity (γclarityj) is significant (p-values less than .0001) at an alpha of .05, which implies that 
this variable should be kept for the complete model (following section). 
 
Figure 14: Parameter Estimates for Model with the Random-coefficient Model 
SAS Output 
                               

Solution for Fixed Effects 
                                           Standard 
                Effect         Estimate       Error      DF    t Value    Pr > |t| 
                Intercept        0.6080     0.05200      38      11.69      <.0001 
                CLARITY          0.5407     0.02052    4421      26.36      <.0001 
 
                                  Type 3 Tests of Fixed Effects 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
 
                          CLARITY         1    4421     694.67    <.0001 
SPSS Output 
Fixed Effects 
 Type III Tests of Fixed Effects(a) 

Source 
Numerator 

df 
Denominator 

df F Sig. 
Intercept 1 32.079 136.681 .000
CLARITY 1 29.753 694.670 .000

a  Dependent Variable: INSTRUCTORINTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
 
 Estimates of Fixed Effects(a) 

Parameter Estimate 
Std. 

Error df t Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Intercept .607987 .052004 32.079 11.691 .000 .502068 .713907
CLARITY .540712 .020515 29.753 26.357 .000 .498800 .582624

a  Dependent Variable: INSTRUCTORINTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
STATA Output                              
------------------------------------------------------------------------------ 
 interaction |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     clarity |   .5404191   .0205099    26.35   0.000     .5002205    .5806178 
       _cons |   .6088723   .0519638    11.72   0.000     .5070252    .7107194 
------------------------------------------------------------------------------ 
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The SAS and SPSS information criteria12 output are all equal for the -2 restricted log likelihood, 
Akaike’s information criterion (AIC), and Hurvich and Tasi’s Criterion (AICC) (Figure 15). The 
Schwarz’s Bayesian Criterion (BIC) is slightly different and may be to differences in the 
software’s algorithms. The fit statistics will be useful when comparing models involving 
instructor interaction (Table 6). The -2 restricted log likelihood, AIC, AICC, and BIC are 
smallest for the random-coefficient model, which implies this model is better than the previously 
examined models. 
 
Figure 15:  Information Criteria for the Random-coefficient Model 
SAS Output                              

Fit Statistics 
-2 Res Log Likelihood          7910.7 
AIC (smaller is better)        7918.7 
AICC (smaller is better)       7918.7 
BIC (smaller is better)        7925.4 

SPSS Output 
Information Criteria(a) 

-2 Restricted Log 
Likelihood 7910.716 

Akaike's Information 
Criterion (AIC) 7918.716 

Hurvich and Tsai's 
Criterion (AICC) 7918.725 

Bozdogan's Criterion 
(CAIC) 7948.327 

Schwarz's Bayesian 
Criterion (BIC) 7944.327 

The information criteria are displayed in smaller-is-better forms. 
a  Dependent Variable: INSTRUCTORINTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 

 
 

Table 6: Comparing Unconditional Model and Model with only Level-2 Predictors 
Information Criteria Unconditional Model Model with only 

level-2 Predictors 
Model with only 

level-1 Predictors
-2 Res Log Likelihood 8906.914 8877.489 7910.716 

AIC 8910.914 8881.489 7918.716 
AICC 8910.917 8881.492 7918.725 
CAIC 8925.720 8896.294 7948.327 
BIC 8923.720 8894.294 7944.327 

                                                 

12 For Stata, use the command “estat ic” after running the xtmixed command. 
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An Intercepts- and Slopes-as-Outcomes Model (Complete Model) 
Now that we have identify the level-1 and level-2 predictors, the intercepts- and slopes-as-
outcomes model combines the findings from the model with level-2 predictors and the random-
coefficients model to build a complete explanatory model, which accounts for the variability 
within and between cluster units. The level-1 model for the intercepts- and slopes-as outcomes 
model (Equation 29) is the same as the random-coefficient model (Equation 15)  
 
Level-1 Model: 
 Yij = β0j + βcat1j  * xcat1 + … + βcatnj  * xcatn  

  + βcont1j  * xcont1  + … + βcontmj  * xcontm + rij        (30)  
 
The dependent value (Yij ) is the measure for the ith subject within the jth cluster unit. rij  is the 
residual of the ith subject within the jth cluster unit and is normally distributed with zero mean 
and a variance of σ2 (N(0, σ2)) after accounting for the level-1 predictors. The β’s in the level-1 
model are similar to the random-coefficient model, except all slopes and the intercept will 
include the significant level-2 predictors found in the model with level-2 predictors (Equations 
30-34).  
 
Level-2 Model: 
 β0j  = γ00 + γ0cat1  * wcat1 + …  + γ0catn * wcatn +  
   γ0cont1  * wcont1 + …  + γ0contm  * wcontm + μ0j     (31) 
 βcat1j = γ cat10 + γcat1cat1  * wcat1 + …  + γcat1n * wcatn +  
   γcat1cont1  * wcont1 + …  + γcat1contm  * wcontm + μ cat1j    (32) 
 … 

 βcatnj  = γcatn0 + γcatncat1  * wcat1 + …  + γcatncatn * wcatn +  
   γcatn1cont1  * wcont1 + …  + γcatncontm  * wcontm +  μ catnj    (33) 
 βcont1j = γcont10 + γcont1cat1  * wcat1 + …  + γcont1catn * wcatn +  
   γcont1cont1  * wcont1 + …  + γcont1contm  * wcontm + μ cont1j    (34) 
 … 
 βcontmj  = γcontm0 + γcontmcat1  * wcat1 + …  + γcontmcatn * wcatn +  
   γcontmcont1  * wcont1 + …  + γcontmcontm  * wcontm + μ contmj   (35) 
  
where the γ’s  (γ00, γcat10, … ,  γcatn0, γcont10,…, γcont10)  is the average intercept/or slope across the 
cluster units and μqj’s  (i.e., μ0j , μcat1j, … , μ catnj,  μcont1j, … , μcontmj ) are the random deviations 
that are normally distributed with a variance of τqq (N(0, τqq)) after accounting for the level-2 
predictors. Substituting Equations 31, 32, 33, 34, 35, into equations leads to the combined model 
(Equation 36). 
 
Combined Model:  
 Yij  = γ00 + γ0cat1  * wcat1 + …  + γ0catn * wcatn + γ0cont1  * wcont1 + …  + γ0contm  * wcontm + μ0j  

+ (γ cat10 + γcat1cat1* wcat1 +… + γcat1n * wcatn + γcat1cont1* wcont1 +… + γcat1contm *wcontm + μ cat1j)* xcat1 

+ … 
+ (γcatl0+ γcatlcat1* wcat1+ … + γcatlcatn* wcatn + γcatlcont1*wcont1+ … + γcatlcontm* wcontm+μ catlj)* xcatn  

+(γcont10 + γcont1cat1* wcat1+…+γcont1n * wcatn+γcont1cont1* wcont1+… +γcont1contm*wcontm+ μ cont1j)* xcont1 

+ … 
+(γcontk0 + γcontkcat1* wcat1+…+ γcontkn * wcatn+γcontkcont1* wcont1+…+γcontkcontm*wcontm+ μcontkj)* xcontk 
+ rij             (36) 



 

 29

 
Model Evaluation 
As seen in the model with only level-2 predictors and the random-coefficients model, the 
“proportion reduction in variance” or “variance explained” evaluates how much variance the 
predictors account for in the level-1 and level-2 models. The number of proportion reduction in 
variance equations (Equations 37, 38, and 39) equals the number of random variables in the 
model (e.g., μ0j, μ cat1j, …, μ catnj, μ cont1j, …, μ contmj and rij).   
 

Within Cluster Unit Variance Explained = 
   

 
     (37) 

 

Between Cluster Unit Variance Explained = 
    

  
    (38)  

 

Varying Slope Variance Explained = 
    

  
    (39) 

 
The possible values for this measure are between one and zero, where a value of one (1) suggests 
that the predictor(s) explain all the variance attributed to the subject for the level-1 model and to 
the cluster unit for the level-2 models (i.e., the β’s). A value of zero implies that the predictor(s) 
explain none of the variance attributed to the subject for the level-1 model and to the cluster unit 
for the level-2 models (i.e., the β’s). 
 
As seen in the random-coefficients model, level-1 predictors are evaluated to determine whether 
the associated β is varying between cluster units or not. If the associated variance (τqq) is 
significant, then the coefficient needs to be modeled as random (e.g., equations 31, 32, 33, 34 
35).  If τqq  is not significant, the regression coefficient should be modeled as fixed (e.g., β = γ).  
 
The next step is to evaluate the significance of the predictors. The null hypothesis is that the γqs is 
equal to zero (Ho: γqs = 0), while the alternative hypothesis is that the γqs is not equal to zero (Ha: 
γqs ≠ 0). If these parameter estimates (γ0cat1, …, γ0catn, γ0cont1, … ,  γ0contm) are significant, these 
predictors needs to be included in the final model; all insignificant predictors should be removed 
from the final model.   
 
Mixed Procedure for Unconditional Model 
Table 7 lists the fixed and random components of a random-coefficient model. Identifying these 
components will be helpful when utilizing the mixed linear procedures for SAS, SPSS, and 
STATA (Figure 19). 
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Table 7: Random and Fixed Components of a Complete Model 
Model Components Type of 

Variable 
Interpretation 

γ00 Fixed γ00 is the mean of the cluster units’ mean for the reference 
group(s) of the categorical predictor(s) and/or when the 
continuous predictors are equal to zero. 

γ0cati  * wcati Fixed γ0cati is the contribution of a categorical level-2 predictor to 
the dependent measure. A significant γ0cati  implies that the 
variable should be included in the final model. 

γ0contj  * wcontj Fixed γ0contj is the contribution of a continuous level-2 predictor 
to the dependent measure. A significant γ0contj implies that 
the variable should be included in the final model. 

γ catk0 * xcatk Fixed γ catk0  is the contribution of a categorical level-1 predictor 
to the dependent measure. A significant γ catk0 implies that 
the variable should be included in the final model. 

γcontl0 * xcontl Fixed γcontl0is the contribution of a categorical level-1 predictor 
to the dependent measure. A significant γcontl0 implies that 
the variable should be included in the final model. 

γcatkcati* wcati* xcatk Fixed γcaticatk is the interaction effect between a categorical level-
1 and a categorical level-2 predictor on the dependent 
measure. A significant γcaticatk implies that the variable 
should be included in the final model. 

γcatkcontj* wcontj* xcatk Fixed γcatkcontj is the interaction effect between a categorical 
level-1 and a continuous level-2 predictor on the 
dependent measure. A significant γcatkcontj implies that the 
variable should be included in the final model. 

γcontlcati* wcati* xcontl Fixed γcontlcati is the interaction effect between a continuous 
level-1 and a continuous level-2 predictor on the 
dependent measure. A significant γcontlcati implies that the 
variable should be included in the final model. 

γcontlcontj* wcontj* xcontl Fixed γcontlcontj is the interaction effect between a categorical 
level-1 and a categorical level-2 predictor on the 
dependent measure. A significant γcontlcontj implies that the 
variable should be included in the final model. 

μcatij * xcati Random μcatij is the unique increment of the slope for variable xcati 
associated with the jth cluster. The variance and its 
significance of this statistic is important (τqq). A 
significant variance implies that the slope for this variable 
differs significantly between organizations. 
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Table 5: Random and Fixed Components of a Random-coefficient Model (con’t) 
Model Components Type of 

Variable 
Interpretation 

μcontjj * xcontj Random μcontjj is the unique increment of the slope for variable xcontj 
associated with the jth cluster. The variance and its 
significance of this statistic is important (τqq). A 
significant variance implies that the slope for this variable 
differs significantly between organizations. 

μ0j Random μ0j is the difference between the cluster unit mean 
(average of the subject scores within the cluster) and the 
mean of the cluster units’ means after accounting for all 
the predictors in the model. A significant variance (τ00) 
implies that the intercepts differ between organizations. 

rij   Random rij  is residual of the subject’s score after accounting for the 
cluster’s effect (μ0j) and the all the predictors in the model.

 
Figure 16: Software Code for the Complete Model 

SAS proc mixed data=DATA noclprint covtest ; 
 class Cluster Unit xcat1 … xcatl wcat1  … wcatn; 
 model Yij = xcat1  … xcatn  wcat1  … wcatn xcont1 ... xcontk wcont1 ... w2contm  (all 
possible interactions between first and second level variables) /solution ddfm=bw; 
 random intercept xcat1 … xcatl xcont1 ... xcontk /sub= Cluster Unit; 
run; 

SPSS MIXED 
  Yij  BY xcat1 … xcatn wcat1 … wcatn WITH xcont1 ... xcontk wcont1 ... w2contm   
  /CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1) 
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, 
ABSOLUTE) 
  PCONVERGE(0.000001, ABSOLUTE) 
  /FIXED = xcat1 … xcatl wcat1 …wcatn xcont1 ... xcontm wcont1 ... w2contm (all possible 
interactions between first and second level variables) | SSTYPE(3) 
  /METHOD = REML 
  /PRINT = SOLUTION TESTCOV 
 /RANDOM INTERCEPT xcat1 … xcatl xcont1 ... xcontk | SUBJECT (Cluster Unit) 
COVTYPE(UN) . 

STATA xtmixed interaction xcat1  … xcatl wcat1  … wcatn xcont1 ... xcontk wcont1 ... w2contm  (all 
possible interactions between first and second level variables) || Cluster Unit: xcat1 
… xcatl xcont1 ... xcontk covariance(unstructured) reml variance 

 
Engineering Instructor Interaction Example 
The complete HLM model for our engineering education example will examine institutional and 
student characteristics that influence student’s interaction with his/her professor. The 
institutional predictor variable included in this model is the organization’s Carnegie 
Classification (variable examined in the model with only level-2 predictors) and the student 
characteristics include high school grade point average (q10bround), student’s perception of 
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instructor clarity (clarity), the amount of perceived collaboration in the program (collab), and the 
student’s perception of program openness (prog_open). Appendix 1 and Appendix 2 provides the 
descriptive statistics of these variables. 
 
In our investigation of random-coefficients model, the perception of clarity differ significantly 
between institutions; thus for the complete model it will be modeled as a random slope. When 
analyzing program openness (analysis not shown here), this predictor differ significantly 
between institutions with a significant slope effect. A student’s high school grade point average, 
and perceived collaboration in the program did not differ significantly between institutions, but 
the slope effects are significant (analysis not shown here); thus these level-1 predictors are 
modeled as fixed effects.   
 
The level-1 model for our engineering example is 
 
 InstructorInteractionij = β0j + βclarityj  * clarity + βprog_openj  * prog_open 
     + βq10bround  * q10bround +  βcollab  * collab  
     + rij        (40) 
 
The dependent value (InstructorInteractionij ) is the measure for the ith subject within the jth 
organization (e.g., j= Cal State Polytechnics, Cal State Sacramento, Case Western, …, Texas A 
& M, and MIT). rij  is the residual of the ith subject within the jth institution and is normally 
distributed with zero mean and a variance of σ2 (N(0, σ2)) after accounting for the level-1 
predictor variable (e.g., βclarityj in our example). Since, we hypothesis that the intercept, clarity, 
and program openness may differ between institutions, the level-2 models are: 
 
 β0j  = γ00 + γ0carn_cat * carn_cat + μ0j       (41) 

 βclarityj = γclarity0 + γclaritycarn_cat * carn_cat + μclarityj     (42) 
 βprog_openj = γprog_open0 + γprog_opencarn_cat * carn_cat + μprog_openj    (43) 
 
γ00  is the mean of the intercepts and μqj’s  are the random deviations that are normally distributed 
with a variance of τ00 (N(0, τ00)) after accounting for Carnegie Classification. μ0j  may be 
considered the deviations away from the mean intercepts, where τ00 is the variability of these 
means between institutions. The average slope for clarity is γclarity and μclarityj are the unique 
contribution of the jth institution to the clarity slope after accounting for the institution’s 
Carnegie classification. These contributions (or deviations) are normally distributed with a 
variance of τ11 (N(0, τ11)). If τ11 is significant (i.e., the value is non-zero), this implies that the 
students’ perception of clarity varies from institution to institution. The average slope for 
program openness is γprog_open0 and μprog_openj are the unique contribution of the jth institution to 
the program openess slope after accounting for the institution’s Carnegie classification. These 
contributions (or deviations) are normally distributed with a variance of τ22 (N(0, τ22)). If τ22 is 
significant (i.e., the value is non-zero), this implies that the students’ perception of program 
openness varies from institution to institution. 
  



 

 33

After substituting equations 41, 42, and 43 into equation 40, the complete model becomes 
 
 InstructorInteractionij = γ00 + γ0carn_cat * carn_cat + μ0j +  
    (γclarity0 + γclaritycarn_cat * carn_cat + μclarityj) * clarity +  
    (γprog_open0 + γprog_opencarn_cat * carn_cat + μprog_openj) * prog_open + 
    βq10bround  * q10bround +  βcollab  * collab + rij   (44) 
 
 InstructorInteractionij = γ00 + γ0carn_cat * carn_cat + μ0j + γclarity0 * clarity  
    + γclaritycarn_cat * carn_cat  * clarity + μclarityj * clarity + 
    γprog_open0  *prog_open  + γprog_opencarn_cat * carn_cat * prog_open 
     + μprog_openj * prog_open +  βq10bround  * q10bround + 
    βcollab  * collab + rij      (45) 
 
The random components of the complete model are the intercept (μ0j), clarity (μclarityj * clarity), 
program openness (μprog_openj * prog_open), and the residuals (rij). The fixed components are 
Carnegie Classification (γ0carn_cat * carn_cat), clarity (γclarity0 * clarity), interaction between clarity 
and Carnegie Classification (γclaritycarn_cat * carn_cat * clarity), program openness (γprog_open0  
*prog_open), interaction between program openness and Carnegie Classification (γprog_opencarn_cat 

* carn_cat * prog_open), high school grade point average (βq10bround  * q10bround), and coloration 
(βcollab  * collab). Figure 17 is the SAS code for the Equation 45 model.  
   
Figure 17: SAS Code for Complete Model Include Interaction Terms   
proc mixed data=ABET noclprint covtest noitprint; 
 class Institution carn_cat; 
 model InstructorInteraction = q10bround clarity collab prog_open 
carn_cat carn_cat*clarity carn_cat*prog_open /solution ddfm=bw; 
 random intercept clarity prog_open /sub=Institution type=simple; 
run; 
 
Figure 18: Solution for Fixed Effects of Complete Model 
                               Solution for Fixed Effects 
 
                                                    Standard 
      Effect                carn_cat    Estimate       Error      DF    t Value    Pr > |t| 
 
      Intercept                         -0.03434      0.2400      35      -0.14      0.8871 
      q10bround                          0.02403    0.007187    4412       3.34      0.0008 
      CLARITY                             0.4052     0.07011    4412       5.78      <.0001 
      COLLAB                              0.2785     0.01232    4412      22.61      <.0001 
      PROG_OPEN                           0.2122     0.04390    4412       4.83      <.0001 
      carn_cat              1            -0.3738      0.2431      35      -1.54      0.1331 
      carn_cat              2            -0.3090      0.3035      35      -1.02      0.3157 
      carn_cat              3            -0.2036      0.2904      35      -0.70      0.4878 
      carn_cat              4                  0           .       .        .         . 
      CLARITY*carn_cat      1           -0.04829     0.07196    4412      -0.67      0.5022 
      CLARITY*carn_cat      2           -0.05499     0.09208    4412      -0.60      0.5504 
      CLARITY*carn_cat      3           0.000864     0.08804    4412       0.01      0.9922 
      CLARITY*carn_cat      4                  0           .       .        .         . 
      PROG_OPEN*carn_cat    1            0.02418     0.04528    4412       0.53      0.5935 
      PROG_OPEN*carn_cat    2            0.09291     0.05868    4412       1.58      0.1134 
      PROG_OPEN*carn_cat    3           -0.02885     0.05626    4412      -0.51      0.6081 
      PROG_OPEN*carn_cat    4                  0           .       .        .         . 
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When examining the fixed effects for the model, the interaction terms between the level-1 and 
level-2 variables are not significant (p-values for the clarity * carn_cat and prog_open* carn_cat 
are all greater than .05). This implies that even though clarity and program openness may vary 
between institutions, the institution’s Carnegie Classification does influence student’s perception 
of clarity and program openness significantly on instructor interaction (the dependent measure). 
Removing the interaction terms creates a more parsimonious model (Equation 46). Figure 19 is 
the SAS, SPSS, and STATA code for our complete model with Equations 47, 48, and 49 
represent the new level-2 models. 
 
  InstructorInteractionij = γ00 + γ0carn_cat * carn_cat + μ0j + γclarity0 * clarity  
    + μclarityj * clarity + γprog_open0  *prog_open  
     + μprog_openj * prog_open +  βq10bround  * q10bround + 
    βcollab  * collab + rij      (46) 
 
 β0j  = γ00 + γ0carn_cat * carn_cat + μ0j       (47) 

 βclarityj = γclarity0 + μclarityj        (48) 
 βprog_openj = γprog_open0 + μprog_openj       (49) 
 
Figure 19: Code for the Engineering Education Example (Complete Model) 

SAS proc mixed data=ABET noclprint covtest noitprint; 
 class Institution carn_cat; 
 model InstructorInteraction = q10bround clarity collab prog_open carn_cat 
/solution ddfm=bw; 
 random intercept clarity prog_open /sub=Institution type=un; 
run; 

SPSS MIXED 
  INSTRUCTORINTERACTION  BY carn_cat  WITH CLARITY PROG_OPEN 
q10bround COLLAB 
  /CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1) 
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, 
ABSOLUTE) 
  PCONVERGE(0.000001, ABSOLUTE) 
  /FIXED = q10bround CLARITY COLLAB PROG_OPEN carn_cat  | 
SSTYPE(3) 
  /METHOD = REML 
  /PRINT = SOLUTION TESTCOV 
 /RANDOM INTERCEPT CLARITY PROG_OPEN  | SUBJECT(Institution) 
COVTYPE(UN) . 

STATA xtmixed interaction q10bround clarity collab prog_open carn_cat_1 carn_cat_2 
carn_cat_3|| institution: clarity prog_open, covariance(unstructured) reml variance 
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Engineering Instructor Interaction Results 
The τqq’s and σ2 estimates are found under the section “Covariance Parameter Estimates” for 
SAS13, “Estimates of Covariance Parameters” for SPSS14, and “Random-effects Parameters” for 
STATA (Figure 20). The parameter estimates from all statistical software programs are similar 
with τ11 (intercept variance) equal to .00231 with a p-value of .0912 (see yellow highlight in 
Figure 20), τ22 (clarity slope variance) equal to .005045 with a p-value of .0440 (green highlight 
in Figure 20), τ33 (program openness slope) equal to .0747 with a p-value of .0747 (blue highlight 
in Figure 20) and σ2 is .2435 with a p-value less than .000115. All variances except for program 
openness are significant at an alpha of .0516. A significant σ2 implies that other level-1 predicator 
variables exist that may decrease the residual variance. While a significant τ22 suggests the slope 
for clarity may be explained by other level-2 predictor variables.   
 
Some researchers may decide that the slope for program openness does not vary between 
institutions since its variance is not significant at an alpha of .05; thus, they may decide to model 
this variable as fixed effect (the following section shows that the fixed effect is significant). I 
decided to keep this variable as a random effect because it is significant at an alpha of .1; 
however, decisions such as these should be guided by theory instead of arbitrary statistical rules.  
 
The proportion of the variance explained by student’s characteristics (clarity, program openness, 
high school grade point average, and collaboration) is 41.94 ((.4194-.2435)/.4194), where .4194 
is the σ2

 of the unconditional model). This implies that 41.94 percent of the within-institution 
variance in the model is explained by student’s perception of instructor clarity, program 
openness, high school grade point average, and collaboration. Since σ2

 is significant, 58.06 
percent (100-41.94) of the unexplained within-student variance may be described by other level-
1 predictors. 
 
The proportion of the variance explained by the institution’s Carnegie classification is 78 percent 
((.099571-.022341)/.099571), where .099571 is the τ00 of the unconditional model calculated in 
the previous section). This implies that 78 percent of the between-institution variance is 
explained by the institution’s Carnegie classification. 
 
With no predictor variables for the slope coefficients (Equations 48 and 49), the proportion of the 
variance is not calculated for clarity and program openness slope. 
  

                                                 

13 If “Covariance Parameter Estimates” is not found in the output, check to see if “covtest” is included in the proc 
mixed statement. 
14 If “Estimates of Covariance Parameters” is not found in the output, check to see if “testcov” is included in the 
print line in the mixed procedure syntax. 
15 SPSS provides the p-value for a 1-tail test; divide this value by 2 to get the same value as the SAS output 
16 STATA and SPSS provide 95% confidence intervals. If the confidence interval does not include zero (0), then the 
variance is significant at an alpha of .05 (1-.95).  
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Figure 20: Estimates of Covariance Parameters for Complete Model 
SAS Output 

Covariance Parameter Estimates 
                                                      Standard         Z 
              Cov Parm     Subject        Estimate       Error     Value        Pr Z 
              UN(1,1)      Institution     0.02231     0.01673      1.33      0.0912 
              UN(2,1)      Institution    -0.00799    0.006420     -1.25      0.2131 
              UN(2,2)      Institution    0.005045    0.002958      1.71      0.0440 
              UN(3,1)      Institution    -0.00064    0.002912     -0.22      0.8273 
              UN(3,2)      Institution    -0.00074    0.001330     -0.55      0.5799 
              UN(3,3)      Institution    0.001353    0.000939      1.44      0.0747 
              Residual                      0.2435    0.005213     46.72      <.0001 
SPSS Output 
Covariance Parameters 

Estimates of Covariance Parameters(a) 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Residual .243546 .005213 46.719 .000 .233540 .253981
Intercept + 
CLARITY + 
PROG_OPEN 
[subject = 
Institution] 

UN (1,1) .022314 .016731 1.334 .182 .005133 .097009
UN (2,1) -.007993 .006420 -1.245 .213 -.020575 .004590
UN (2,2) .005045 .002958 1.706 .088 .001599 .015919
UN (3,1) -.000636 .002912 -.218 .827 -.006343 .005072
UN (3,2) -.000736 .001330 -.554 .580 -.003342 .001870
UN (3,3) .001354 .000939 1.442 .149 .000348 .005272

a  Dependent Variable: INTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
STATA Output                              
------------------------------------------------------------------------------ 
  Random-effects Parameters   |   Estimate   Std. Err.     [95% Conf. Interval] 
-----------------------------+------------------------------------------------ 
institution: Unstructured          | 
                var(clarity)               |   .0050387   .0029566      .0015953    .0159142 
               var(prog_o~n)           |   .0013536   .0009383      .0003479    .0052667 
                  var(_cons)              |   .0223133   .0167345      .0051307    .0970393 
       cov(clarity,prog_o~n)       |  -.0007326     .00133     -.0033393    .0018741 
          cov(clarity,_cons)          |  -.0079833   .0064177     -.0205618    .0045951 
         cov(prog_o~n,_cons)      |  -.0006456   .0029154     -.0063597    .0050686 
-----------------------------+------------------------------------------------ 
               var(Residual)            |   .2435884   .0052139      .2335806    .2540249 
------------------------------------------------------------------------------ 
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The fixed effects for the complete model can be found under the “Solution for Fixed Effects” in 
SAS output, “Estimates of Fixed Effects” in SPSS output, and “Interaction” in STATA output 
(Figure 21). All the fixed effects are significant at an alpha of .05 (p-values for all predictor 
variables are less than .05); thus all variables are kept in the final model. For this example, the 
interpretation of the intercept (γ00) is the average instructor interaction is .0007987 for 
institutions with the Bachelor’s Carnegie Classification when all the continuous variables are set 
equal to zero. The instructor interaction increases .3662 for every one point increases in student’s 
perception of clarity after controlling for the other predictor variables. The largest influence on 
instructor interaction is the school’s Carnegie Classification, which decreases .4450 when the 
school is a research extensive when compared to a Bachelor’s institution, holding other variables 
constant. 
 
Figure 21: Parameter Estimates for Complete Model 
SAS Output                                    

Solution for Fixed Effects 
                                                 Standard 
          Effect         carn_cat    Estimate       Error      DF    t Value    Pr > |t| 
          Intercept                  0.007987     0.09893      35       0.08      0.9361 
          q10bround                   0.02425    0.007176    4418       3.38      0.0007 
          CLARITY                      0.3662     0.01860    4418      19.68      <.0001 
          COLLAB                       0.2796     0.01231    4418      22.72      <.0001 
          PROG_OPEN                    0.2359     0.01192    4418      19.79      <.0001 
          carn_cat       1            -0.4450     0.07972      35      -5.58      <.0001 
          carn_cat       2            -0.2442      0.1090      35      -2.24      0.0315 
          carn_cat       3            -0.2724     0.09754      35      -2.79      0.0084 
          carn_cat       4                  0           .       .        .         . 
                                  Type 3 Tests of Fixed Effects 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
                          q10bround       1    4418      11.42    0.0007 
                          CLARITY         1    4418     387.44    <.0001 
                          COLLAB          1    4418     516.20    <.0001 
                          PROG_OPEN       1    4418     391.73    <.0001 
                          carn_cat        3      35      12.81    <.0001 
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Figure 21: Parameter Estimates for Complete Model (con’t) 
SPSS Output 
Fixed Effects 
  Type III Tests of Fixed Effects(a) 

Source 
Numerator 

df 
Denominator 

df F Sig. 
Intercept 1 113.807 12.281 .001 
q10bround 1 4430.797 11.418 .001 
CLARITY 1 30.754 387.435 .000 
COLLAB 1 4414.609 516.199 .000 
PROG_OPEN 1 43.537 391.713 .000 
carn_cat 3 40.175 12.814 .000 

a  Dependent Variable: INSTRUCTORINTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
 Estimates of Fixed Effects(b) 

Parameter Estimate 
Std. 

Error df t Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Intercept .007990 .098931 110.005 .081 .936 -.188069 .204048
q10bround .024247 .007176 4430.797 3.379 .001 .010179 .038315
CLARITY .366184 .018604 30.754 19.683 .000 .328229 .404139
COLLAB .279613 .012307 4414.609 22.720 .000 .255485 .303740
PROG_OPEN .235901 .011919 43.537 19.792 .000 .211873 .259930
[carn_cat=1.00] -.445046 .079720 47.368 -5.583 .000 -.605390 -.284702
[carn_cat=2.00] -.244238 .109044 43.071 -2.240 .030 -.464135 -.024341
[carn_cat=3.00] -.272435 .097540 46.709 -2.793 .008 -.468693 -.076177
[carn_cat=4.00] 0(a) 0 . . . . .

a  This parameter is set to zero because it is redundant. 
b  Dependent Variable: INSTRUCTORINTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 
STATA Output                              
------------------------------------------------------------------------------ 
 interaction    |      Coef.       Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
   q10bround |    .024235   .0071764     3.38     0.001     .0101696    .0383004 
     clarity       |   .3658772   .0185964    19.67   0.000     .3294289    .4023255 
      collab      |   .2796545   .0123085    22.72    0.000     .2555302    .3037788 
   prog_open  |   .2358166   .0119179    19.79    0.000     .2124579    .2591754 
  carn_cat_1  |  -.4449726   .0797291    -5.58    0.000    -.6012387   -.2887065 
  carn_cat_2  |  -.2441312   .1090524    -2.24    0.025      -.45787   -.0303923 
  carn_cat_3  |   -.272286   .0975487    -2.79     0.005    -.4634779   -.0810941 
       _cons     |   .0088802   .0989372     0.09     0.928    -.1850331    .2027936 
------------------------------------------------------------------------------ 
 
The SAS and SPSS information criteria17 output are all equal for the -2 restricted log likelihood, 
Akaike’s information criterion (AIC), and Hurvich and Tasi’s Criterion (AICC) (Figure 22). The 

                                                 

17 For Stata, use the command “estat ic” after running the xtmixed command. 
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Schwarz’s Bayesian Criterion (BIC) is slightly different and may be to differences in the 
software’s algorithms. The fit statistics will be useful when comparing models involving 
instructor interaction (Table 4). The -2 restricted log likelihood, AIC, AICC, and BIC are 
smallest for the complete, which implies the complete model is best when compared to other 
models examined. 
 
Figure 22:  Information Criteria for the Complete Model 
SAS Output 

Fit Statistics 
                              -2 Res Log Likelihood          6495.2 
                              AIC (smaller is better)        6509.2 
                              AICC (smaller is better)       6509.2 
                              BIC (smaller is better)        6520.9 
SPSS Output 

Information Criteria(a) 
-2 Restricted Log 

Likelihood 
6495.212

Akaike's 
Information 

Criterion (AIC) 
6509.212

Hurvich and 
Tsai's Criterion 

(AICC) 
6509.237

Bozdogan's 
Criterion (CAIC) 

6561.021

Schwarz's 
Bayesian 

Criterion (BIC) 
6554.021

The information criteria are displayed in smaller-is-better forms. 
a  Dependent Variable: INTERACTION  Interaction Scale: Stu q16k,l,m,n,o. 

 
 

Table 8: Comparing Unconditional Model and Model with only Level-2 Predictors 
Information 

Criteria 
Unconditional 

Model 
Model with only 

level-2 Predictors
Model with 
only level-1 
Predictors 

Complete 
Model 

-2 Res Log 
Likelihood 

8906.914 8877.489 7910.716 6495.212 

AIC 8910.914 8881.489 7918.716 6509.212 
AICC 8910.917 8881.492 7918.725 6509.237 
CAIC 8925.720 8896.294 7948.327 6561.021 
BIC 8923.720 8894.294 7944.327 6554.021 
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Comparing Variance Structures 
Besides estimating the regression coefficients, the HLM method also estimates the second level 
model variances and the covariance between the second level models (i.e., the β’s).  For β0j , we 
want to examine whether the variance (τ00) is significant between cluster units (e.g., j=cluster 
unit 1, cluster unit 2, …) for the intercept. If the HLM model includes random slopes (βij , where 
i = 1, 2, …. and j=cluster unit 1, cluster 2, …), the covariance among the random slopes and 
random intercept are estimated (τ01  , τ02 , …).  Examining the covariance between random 
coefficients provides insight on the relationship between variables at the second level of the 
model. 
 
Most researchers are inclined to estimate all the variances and covariance among the random 
coefficients, hence specifying the unstructured covariance structure in their HLM procedure 
(Figure 23). When the model becomes complex, the number of variance-covariance parameters 
estimated increases by 2n for every new random level-1 predictor added to the model, which will 
increase computational processing time. Thus, imposing a covariance structure (e.g., simple/ 
diagonal, compound symmetry) may be necessary. In developing your HLM model, you may 
also notice that estimating the covariance is unnecessary, because they are not significant. This 
suggests that another covariance structure (such as simple) may be sufficient and may even 
improve your model’s fit statistics. Figure 23 defines common covariance structures for HLM 
models involving subjects nested in organizational structures (e.g., Raudenbush and Bryk’s 
(2002) math achievement model) and Figure 24 provides the software code to specify the 
covariance structures in SAS, SPSS and STATA. Figure 25 displays the SAS code for the 
instructor interaction example specifying each of these structures (see green highlight). Readers 
should know that other covariance structures exists for personal growth models (see Singer’s 
(1998) opposite naming task) such as autoregressive and toeplitz. 
Figure 23: Covariance Structures  

Type Matrix Structure Assumption 
Unstructured 
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 41

 
Figure 24: Software Code for the Complete Model 

Software Unstructured Simple Compound Symmetry 
SAS type = un type = simple type =cs 
SPSS COVTYPE(UN) COVTYPE(DIAG) COVTYPE(CS) 
STATA covariance(unstructured) covariance(independent) covariance(exchangeable)
 
Figure 25: SAS Software Code for Different Covariance Structures in SAS for Instructor Interaction 
Example 

Unstructured proc mixed data=ABET noclprint covtest noitprint; 
 class Institution carn_cat; 
 model InstructorInteraction = q10bround clarity collab 
prog_open carn_cat /solution ddfm=bw; 
 random intercept clarity prog_open /sub=Institution 
type=un; 
run; 

Simple/Diagonal proc mixed data=ABET noclprint covtest noitprint; 
 class Institution carn_cat; 
 model InstructorInteraction = q10bround clarity collab 
prog_open carn_cat /solution ddfm=bw; 
 random intercept clarity prog_open /sub=Institution 
type=simple; 
run; 

Compound Symmetry proc mixed data=ABET noclprint covtest noitprint; 
 class Institution carn_cat; 
 model InstructorInteraction = q10bround clarity collab 
prog_open carn_cat /solution ddfm=bw; 
 random intercept clarity prog_open /sub=Institution 
type=cs; 
run; 
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Results 
The fit statistics determine the best model (Figure 26), when comparing models. We see that the 
compound symmetry covariance structure is best since the AIC, AICC, and BIC are smallest 
when compared to the simple/diagonal and unstructured model.  
Figure 26:  Information Criteria  
Unstructured Covariance Structure 
                                         Fit Statistics 
 
                              -2 Res Log Likelihood          6495.2 
                              AIC (smaller is better)        6509.2 
                              AICC (smaller is better)       6509.2 
                              BIC (smaller is better)        6520.9 
Simple/Diagonal Covariance Structure 

Fit Statistics 
 
                              -2 Res Log Likelihood          6500.2 
                              AIC (smaller is better)        6508.2 
                              AICC (smaller is better)       6508.2 

BIC (smaller is better)        6514.8 
Compound Symmetry Covariance Structure 
                                         Fit Statistics 
 
                              -2 Res Log Likelihood          6499.3 
                              AIC (smaller is better)        6505.3 
                              AICC (smaller is better)       6505.3 
                              BIC (smaller is better)        6510.3 
 
Figure 27 is the covariance parameter estimates of the different models.  When examining the 
unstructured covariance structure model, we see that all three covariance are not significant at an 
alpha of .05 (p-values are .2131 for UN(2,1), .8273 for UN(3,1) and .5799 for UN(3,2)). In other 
words, I fail to reject the null hypothesis (Ho: covariance is equal to zero) and conclude that the 
covariance may be zero.  This suggests that a simple/diagonal covariance structure may be more 
appropriate for this model, which assumes that the covariance among the random coefficients (in 
this example, the intercept, clarity, and program openness) is zero. Assuming a zero covariance, 
suggests that the random coefficients are independent of each other, i.e., no relationships exists 
between the random intercept and the random slopes. For this model, if a negative covariance 
between the clarity and program openness slope is significant (which it is not in this case), then 
as the slope clarity increases, the slope for program openness would decrease. If a positive 
covariance exists, then as the slope of clarity increases, the slope for program openness would 
also increase. Thus, even though the compound symmetry model has a better-fit statistic than 
simple/diagonal, the model may not be appropriate since the covariance for this model is not 
significant at an alpha of .05 (CS p-value = .3179).  
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Figure 27: Estimates of Covariance Parameters 
Unstructured Covariance Structure 

Covariance Parameter Estimates 
                                                      Standard         Z 
              Cov Parm     Subject        Estimate       Error     Value        Pr Z 
              UN(1,1)      Institution     0.02231     0.01673      1.33      0.0912 
              UN(2,1)      Institution    -0.00799    0.006420     -1.25      0.2131 
              UN(2,2)      Institution    0.005045    0.002958      1.71      0.0440 
              UN(3,1)      Institution    -0.00064    0.002912     -0.22      0.8273 
              UN(3,2)      Institution    -0.00074    0.001330     -0.55      0.5799 
              UN(3,3)      Institution    0.001353    0.000939      1.44      0.0747 
              Residual                      0.2435    0.005213     46.72      <.0001 
Simple/Diagonal Covariance Structure                              

Covariance Parameter Estimates 
                                                      Standard         Z 
             Cov Parm      Subject        Estimate       Error     Value        Pr Z 
             Intercept     Institution    0.001538    0.004759      0.32      0.3732 
             CLARITY       Institution    0.001139    0.000586      1.95      0.0259 
             PROG_OPEN     Institution    0.000626    0.000457      1.37      0.0853 
             Residual                       0.2446    0.005220     46.86      <.0001 
Compound Symmetry Covariance Structure 
                                  Covariance Parameter Estimates 
                                                      Standard         Z 
              Cov Parm     Subject        Estimate       Error     Value        Pr Z 
 
              Variance     Institution    0.002418    0.001571      1.54      0.0619 
              CS           Institution    -0.00061    0.000613     -1.00      0.3179 
              Residual                      0.2443    0.005218     46.81      <.0001 
 
The compound symmetry model also assumes that the variances between the second level 
models are equal (i.e., τ00  = τ11 = τ22). However, from the unstructured covariance structure 
estimates, we see that the variances between the random coefficients appear to be different 
(UN(1,1) = intercept variance = .2231; UN(2,2) = clarity’s slope variance = .005045; and 
UN(3,3) = program openness’ slope variance = .006045). This suggests that the compound 
symmetry model may not be appropriate. The simple/diagonal variance estimates for intercept 
variance (τ00 ), clarity’s slope variance (τ11 ), and program openness’ slope variance (τ22) are 
.001538, 001139, and .000626. Even though, the estimates appear to be different, the 
significance of these parameters are consistent (i.e., only clarity is significant). 
 
For all three models, the residual variance estimates, the σ2 for the HLM model, are relatively the 
same (.2435, .2446, and .2443 – see blue highlight in Figure 27). The unstructured covariance 
structure may be best because the residual variance is the smallest; however, nothing is gained or 
lost when choosing between the three types of covariance structures.  
 



 

 44

When examining the regression coefficient estimates (i.e., the γ’s in the HLM model) between 
the three covariance structure models (Table 9, see Figure 28 for complete output), only the 
intercept estimates appear to be different (.007987, .03469, and .02716). The estimates for the 
intercept vary due to the restrictions placed on the covariance (i.e., set to zero for simple or all 
covariance between parameters equal in compound symmetry). Selecting a covariance matrix 
structure appears to have little influence on estimating the regression coefficients.   
  
Table 9: Comparison of Regression Coefficient between Covariance Structures 
 

Unstructured Simple/Diagonal 
Compound 
Symmetry 

Intercept .007987 .03469 .02716 
Q10bround .02425 .02447 .02424 
Clarity .3662 .3618 .3614 
Collaboration .2796 .2788 .2788 
Program Openness .2359 .2357 .2384 
Carnegie Classification (1) -.4450 -.4554 -.4542 
Carnegie Classification (2) -.2442 -.2661 -.2699 
Carnegie Classification (3) -.2724 -.2734 -.2689 
Carnegie Classification (4) 0 0 0 
 
For this model, I would mostly likely utilize the simple/diagonal covariance structure, because of 
the smaller fit statistics (AIC, AICC, BIC) compared to the unstructured model and the 
covariance among random coefficients are not significant. The compound symmetry does not 
appear appropriate because of the variances among the random coefficients do not appear to be 
equal and the covariance between the random coefficients are not significant.   
 
Figure 28: Parameter Estimates for Model 
Unstructured Covariance Structure 
                                    Solution for Fixed Effects 
                                                 Standard 
          Effect         carn_cat    Estimate       Error      DF    t Value    Pr > |t| 
          Intercept                  0.007987     0.09893      35       0.08      0.9361 
          q10bround                   0.02425    0.007176    4418       3.38      0.0007 
          CLARITY                      0.3662     0.01860    4418      19.68      <.0001 
          COLLAB                       0.2796     0.01231    4418      22.72      <.0001 
          PROG_OPEN                    0.2359     0.01192    4418      19.79      <.0001 
          carn_cat       1            -0.4450     0.07972      35      -5.58      <.0001 
          carn_cat       2            -0.2442      0.1090      35      -2.24      0.0315 
          carn_cat       3            -0.2724     0.09754      35      -2.79      0.0084 
          carn_cat       4                  0           .       .        .         . 
                                  Type 3 Tests of Fixed Effects 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
                          q10bround       1    4418      11.42    0.0007 
                          CLARITY         1    4418     387.44    <.0001 
                          COLLAB          1    4418     516.20    <.0001 
                          PROG_OPEN       1    4418     391.73    <.0001 
                          carn_cat        3      35      12.81    <.0001 
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Simple/Diagonal Covariance Structure 
                                    Solution for Fixed Effects 
                                                 Standard 
          Effect         carn_cat    Estimate       Error      DF    t Value    Pr > |t| 
          Intercept                   0.03469     0.09694      35       0.36      0.7226 
          q10bround                 0.02447    0.007181    4418       3.41      0.0007 
          CLARITY                      0.3618     0.01489    4418      24.29      <.0001 
          COLLAB                       0.2788     0.01231    4418      22.65      <.0001 
          PROG_OPEN              0.2357     0.01083    4418      21.77      <.0001 
          carn_cat       1            -0.4554     0.08321      35      -5.47      <.0001 
          carn_cat       2            -0.2661      0.1141      35      -2.33      0.0256 
          carn_cat       3            -0.2734      0.1021      35      -2.68      0.0112 
          carn_cat       4                  0           .       .        .         . 
                                  Type 3 Tests of Fixed Effects 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
                          q10bround       1    4418      11.61    0.0007 
                          CLARITY         1    4418     590.20    <.0001 
                          COLLAB          1    4418     512.83    <.0001 
                          PROG_OPEN       1    4418     474.02    <.0001 
                          carn_cat        3      35      12.10    <.0001 
Compound Symmetry Covariance Structure 
                                    Solution for Fixed Effects 
                                                 Standard 
          Effect         carn_cat    Estimate       Error      DF    t Value    Pr > |t| 
          Intercept                   0.02716     0.09469      35       0.29      0.7759 
          q10bround                   0.02424    0.007176    4418       3.38      0.0007 
          CLARITY                      0.3614     0.01563    4418      23.12      <.0001 
          COLLAB                       0.2788     0.01230    4418      22.66      <.0001 
          PROG_OPEN                    0.2384     0.01247    4418      19.13      <.0001 
          carn_cat       1            -0.4542     0.07940      35      -5.72      <.0001 
          carn_cat       2            -0.2699      0.1076      35      -2.51      0.0169 
          carn_cat       3            -0.2689     0.09700      35      -2.77      0.0089 
          carn_cat       4                  0           .       .        .         . 
                                  Type 3 Tests of Fixed Effects 
                                        Num     Den 
                          Effect         DF      DF    F Value    Pr > F 
                          q10bround       1    4418      11.41    0.0007 
                          CLARITY         1    4418     534.41    <.0001 
                          COLLAB          1    4418     513.35    <.0001 
                          PROG_OPEN       1    4418     365.82    <.0001 
                          carn_cat        3      35      13.44    <.0001 
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Centering 
 
Raudenbush and Bryk (2002) offer three suggestions in the location of the level-1 predictor 
variables: the natural X metric (also refer to as the raw score), centering around the grand mean, 
and centering around the group mean (also refer to as centering within context). Utilizing our 
engineering example, Equation 49 is an example utilizing the natural X metric for our model. 
The natural score maintains the raw measure (i.e., no transformations applied to the variable’s 
values). 
 
 InstructorInteractionij = β0j + βclarityj  * clarity + rij        (49) 
 
Grand mean centering involves calculating the mean of all the subjects within the study and 
subtracting that value from the original measure. This procedure would center the mean to equal 
to zero. For our engineering example, I would calculate the students’ mean on their perception of 
clarity and then subtract that value from the original clarity measure. 
 

 InstructorInteractionij = β0j + βclarityj  * (clarity – .. ) + rij      (50) 
 
Centering around the group mean entails calculating the mean of the subjects score within a 
cluster unit and then subtracting that value from all the subjects within that group (Equation 50). 
For our example, we found the mean clarity score within an institution (e.g., Georgia Tech) and 
then subtract that value from all Georgia Tech students’ clarity score. This would be done for the 
other 38 institutions in our study. 
 

 InstructorInteractionij = β0j + βclarityj  * (clarity –  . ) + rij     (51) 

 
Centering (either around the grand or the group) versus maintaining the natural metric provides a 
more meaningful interpretation of the fixed intercept term (γ00) (Singer, 1997); however, Kreft, 
de Leeuw, and Aiken (1995) conclude that there is no statistically correct choice in where the 
level-1 predictor is located. They found that the natural X metric and the grand mean location 
produce equivalent statistical models (i.e., models that have the same expectations and 
dispersions). Even though the regression coefficients between the two models may be different, 
an equivalent model implies a one-to-one transformation exist so that model can be converted to 
the other. The advantage of centering (either grand mean or group mean) though does remove a 
large portion of the confounding slope and intercept variance (Kreft, de Leeuw, & Aiken, 1995). 
Statistically, utilizing a group-mean centering provides a different model from the natural X 
metric and grand mean centering; thus, the decision in centering should depend on the 
researcher’s theoretical model. The suggestion though is to center (either grand mean or group 
mean) the variable to provide a more meaningful interpretation of the fixed intercept term and to 
ease estimation computations and stability (Kreft, de Leeuw, & Aiken, 1995). 
 
Contextual Models 
Contextual models include the group mean as a variable in the level-2 model (Burstein, 1980). 
This implies the predictor has a within- and between effect on the dependent measure. An 
example is Raudenbush and Bryk’s (2002) math achievement example, where they include the 
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school district’s average socio economic status at the second level. The implication is that not 
only does a student’s socio economic status (within- effect), but also the relative wealth of the 
student’s school district (between-effect), measured by the mean socio economic status within 
the school district, influences his/her match achievement. Including the group mean as a level-2 
predictor provides contextualizes the individual’s situation. The choice of centering within the 
level-1 model influences the interpretation of the regression coefficients. Group-mean centering 
decomposes the effects into within- and between cluster units; while grand mean centering 
provides the compositional (the sum of the within – and between cluster unit effects) and the 
within- cluster effect (see Table 5.11 on p. 140 in Raudenbush and Bryk (2002)).  
 
The decision to include the group mean as a level-2 predictor depends on the researcher’s 
theoretical model in whether the variable’s context influences the dependent measure (Kreft, de 
Leeuw, & Aiken, 1995). For example, when developing a contextual HLM models for student 
success, SAT scores are often included as a level-1 predictor. The inclusion of the SAT group 
mean as a level-2 predictor depends on whether the researcher also believes success is a school 
effect (Kreft, de Leeuw, & Aiken, 1995). The school effect is the belief that having peers of 
similar ability also influences student’s success. As noted above, including the group mean as a 
level-2 predictor partitions the variable’s effects into within- and between cluster units; thus, the 
researcher in developing a contextual model must be able to justify that the predictor would have 
a between cluster effect.  
 
Centering in SAS, SPSS, and STATA 
Unlike HLM6, the mixed linear procedures in SAS, SPSS, and STATA do not offer an option of 
centering a variable. If you want to center a variable, the center variable must be created. The 
grand mean centered variable is computed by calculating the variable’s mean and then creating a 
new variable (e.g., GrandMeanCenterVariable) by subtracting the grand mean from the original 
variable. 
 
My suggestion in creating a group-mean centered variable is first calculate the group-mean for 
the variable (SAS use proc means, SPSS use the MEANS procedure, and STATA use “tab 
(variable) summarize(cluster unit)”). Once the group-mean is tabulated, create a group-mean 
variable (GroupMeanVariable), which will be useful, if you decide to include this variable as a 
level-2 predictor. Figure 29 provides one method of creating the GroupMeanVariable. Then 
create a group-mean centered variable (e.g., GroupMeanCenterVariable) by subtracting the 
group mean variable from the original variable.  
 
Figure 29: Creating a Group Mean Variable in SPSS 
RECODE 
 ClusterUnit 
  (ClusterUnit1=Cluster Unit 1’s Mean)  
  (ClusterUnit2=Cluster Unit 2’s Mean)  
  … 
  (ClusterUnit j=Cluster Unit j’s Mean)  
 INTO  GroupMeanVariable . 
EXECUTE . 
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Conclusion 
Figure 30 provides a guide in building an HLM. There is no statistical reasoning to the order of 
these steps. Unlike OLS regression, the mixed procedure does not have a method option (e.g., 
stepwise, forward or backward) in creating a parsimonious model with only significant terms. 
Thus, the first step in identifying possible variables for an HLM is to develop an OLS regression 
model with only significant terms (Step 1). Since, OLS regression underestimates the size of the 
standard errors of the regression coefficients; thus, significant terms in the OLS model may be 
insignificant in the HLM and non-significant terms in the OLS regression model will be non-
significant terms in HLM.  
 
The next step (Step 2) is to evaluate the unconditional model, which partitions the variance into 
between and within cluster units. With the variance partition in this fashion, the intraclass 
correlation (ρ) is calculated (Step 3). The within and between variances will be used as baselines 
when evaluating predictors and the completeness of the final model (e.g., proportion reduction in 
variance measures). You may decide that the OLS regression model suffices, because the 
intraclass correlation is small enough (5%); that accounting for organizational characteristics is 
not worthwhile. However, if the intraclass correlation is large enough, then Step 4 is creating a 
model with only level-2 predictors.  
 
Step 5 evaluates the significance of the fixed effects of the model (i.e., should the level-2 
predictor stay in model) and whether the variance at the between cluster units is adequately 
explained (i.e., is the between cluster units variance, τ00, significant? If not, other level-2 
predictor variables might improve the model). The significant level-2 predictors are kept for the 
complete and final model. 
 
Step 6 is building the random-coefficient model, or developing a model with level-1 predictor 
variables. The main objective of Step 7 is to evaluate the level-1 predictor (i.e., is the fixed effect 
significant?), determine whether level-1 predictor varies between institutions (i.e., is the variance 
of the slope significant? If yes, the variables needs to be modeled as a random effect), and reduce 
the within cluster unit variance (σ2). The significant level-1 predictors are kept for the complete 
and final model. 
 
Step 8 combines the information found in Step 5 and Step 7 to develop the final model. The 
complete model incorporates the significant level-2 and level-1 predictors and any significant 
interactions between them. Step 9 evaluates the model by examining measures such as 
proportion reduction in variance measures and the significance of the fixed effects.  
 
If the model has difficulty in converging to a final estimate, the researcher may choose to change 
his/her covariance structure from an unstructured to a simple/ diagonal. Other options to help 
with convergence include centering variables or incorporating group means (contextual model) 
as a level-2 predictor.  
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Figure 30: Creating a HLM Model 
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APPENDIX 1: Descriptive Statistics of Individual Students 
 
 Mean Std. 

Dev 
Skewness 

(Std Error) 
Kurtosis 

(Std Error) 
In-class & Out-of Class Activities     

Clarity and Organization 3.1053 
.5785

7 
-.243 (0.37) -.189 (.073) 

Collaborative Learning 2.8974 
.6747

9 
-.297 (0.37) -.507 (.073) 

Instructor Interaction and Feedback 2.2077 
.6862

0 
-.431 (.037) -.158 (.073) 

Program Openness to Ideas and 
People 

2.6243 
.8625

6 
.421 (.037) -.304 (.073) 

Program Diversity Climate 4.3311 
.5839

7 
-1.439 (.037) 2.742 (.073) 

     
Student Characteristics     
Age  19.11  3.317  4.222 (.037)  22.106 (.073) 
Family income  5.0  2.170  .195 (.037)  -.652 (.073)  
SAT Verbal  597.98  86.317  .007 (.037)  .044 (.073)  
SAT Math  676.62  72.246  -.363 (.037)  .210 (.073)  
SAT Overall  1274.601 137.05  -.081 (.037)  .020 (.073)  
Overall High School GPA  5.64  .707  -2.430 (.037)  6.839 (.073)  
 
The following are the variable descriptions (Lattuca, Terenzini, Volkwein, 2005). 
 

Student Reports of their In-class and Out-of-class Activities Relevant to Engineering 
 

Clarity and Organization Scale: An individual student’s score on a 3-item scale (where 4 = 
almost always, to 1 = almost never) assessing how often things happened in their classes. 
Constituent items: “Assignments and class activities were clearly explained;” “Assignments, 
presentations, and learning activities were clearly related to one another;” “Instructors made 
clear what was expected of students in the way of activities and effort.” (1994 Alpha = .82, 2004 
Alpha = .82) 
 
Collaborative Learning Scale: An individual student’s score on a 7-item scale (where 4 = almost 
always, to 1 = almost never) assessing how often things happened in their classes. Constituent 
items: “I worked cooperatively with other students on course assignments;” “Students taught and 
learned from each other;” “We worked in groups;” “I discussed ideas with my classmates 
(individuals or groups);” “I got feedback on my work or ideas from my classmates;” “I interacted 
with other students in the course outside of class;” “We did things that required students to be 
active participants in the teaching and learning process.” (1994 Alpha = .91, 2004 Alpha = .90) 
 
Instructor Interaction and Feedback Scale: An individual student’s score on a 5-item scale 
(where 4 = almost always, to 1 = almost never) assessing how often things happened in their 
classes. Constituent items: “Instructors gave me frequent feedback on my work;” “Instructors 
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gave me detailed feedback on my work;” “Instructors guided students’ learning activities rather 
than lecturing or demonstrating the course material;” “I interacted with instructors as part of the 
course;” “I interacted with instructors outside of class (including office hours, advising, 
socializing, etc.).” (1994 Alpha = .87, 2004 Alpha = .87) 
 
Program Openness to Ideas and People: An individual student’s score on a 4-item scale (where 
4 = almost always, to 1 = almost never) assessing how often things happened in the program 
both in-class and out-of-class. Constituent items: “My engineering courses encouraged me to 
examine my beliefs and values;” “My engineering courses emphasized tolerance and respect for 
differences;” “My department emphasizes the importance of diversity in the engineering 
workplace;” “My engineering friends and I discussed diversity issues.” (1994 Alpha = .75, 2004 
Alpha = .74) 
 
Program Diversity Climate: An individual student’s score on a 4-item scale assessing how 
often things happened in the program when out-of-class. Constituent items: “In my major, I 
observed the use of offensive words, behaviors, or gestures directed at students because of their 
identity” (5 = strongly disagree, to 1 = strongly agree); “I was harassed or hassled by others in 
my major because of my identity” (5 = strongly disagree, to 1 = strongly agree); “I know some 
students who feel like they don't fit in this department because of their identity” (5 = strongly 
disagree, to 1 = strongly agree); “The faculty in my department are committed to treating all 
students fairly(5 = strongly agree, to 1 = strongly disagree).” (1994 Alpha = .57, 2004 Alpha = 
.57) 
 

Students’ Characteristics 
Age: Actual years  
Family income: 9-point scale, where 1 = below $20,000 and 9 = more than 
$150,000  
SAT scores: Actual scores on both the math and verbal sections ofthe 
SATs  
Overall high school GPA: 6-point scale, where 1 = below 1.49 (below C-) and 6 = 3.5 to 
4.0 (A- to A) Overall college GPA: 6-point scale, where 1 = below 1.49 (below C-) and 6 = 
3.5 to 4.0 (A- to A)  
Characteristic  Value Count 
Gender  Female  1095  

 Male 3366 
Transfer status  Transfer 951 

 Non-transfer 3510 
US citizen  No  514  

 Yes 3947 
Mothers highest education  High School diploma, GED, or less  1017 

 Some College (including Associate's Degree) 1064 
 Bachelor's degree  1529  
 Advanced degree 851 

Father's highest education  High School diploma, GED, or less  852 
 Some College (including Associate's Degree) 859 
 Bachelor's degree 1436 
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 Advanced degree  1314  
Employment during college  No 1667 

 Yes 2794 
Months spent in a co-op/intern  None 1803 

 1-4 743 
 5-8 699 
 9-12 595 
 More than 12 months 621 

Months Spent in a study abroad None  4010  
 1-4 339 
 5-8  63  
 9-12 34 
 More than 12 months 15 

 
Months spent traveling abroad  None 3327 

 1-4 941 
 5-8 114 
 9-12 36 
 More than 12 months 43 

Months spent participating in a design None 2690 
project  1-4 999 

 5-8 318 
 9-12 188 
 More than 12 months  266  

Activeness in a professional society or Not at All 1637 
Engineering  Somewhat 1642 

 Moderately 582 
 Highly 600 
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APPENDIX 2: Descriptive Statistics of Organization Characteristics 
 
Institution  Number of Students 
Cal State Polytechnic  129  
Cal State, Sacramento  46 
Case Western  79  
Clemson  160 
Cornell  144  
Embry- Riddle  37 
Georgia Tech  138  
Howard  21 
Iowa State  189  
North Carolina AT&T  42  
South Dakota  78 
Syracuse  44 
Ohio State  349  
University of Texas Arlington  116 
Tri-State  38 
UCLA  80 
USMA  48  
University of Florida  186  
University of Illinois, Chicago  136 
University of Michigan  182  
University of Missouri, Columbia  67 
Notre Dame  104 
University of Texas, Austin  330  
University of the Pacific  14 
Western Michigan  67  
Worcester  110 
Youngstown State  39 
Illinois Institute of Technology  114  
Lehigh University  121  
Princeton  40 
University of Arkansas  52  
Temple  28 
Union College  31 
Arizona State  129 
Marquette  83 
Purdue  278 
Virginia Tech  135 
Texas A&M  348  
MIT  129 
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Characteristic  Value Count 
Type of Control  Public  24  

 Private 15 
NSF Coalition Participation  Member of Coalition 15 

 Not a coalition member 24 
EC2000 review Schedule  Early (1998-2000) 17 

 On-time (2001-2003) 14 
 Late (2004-2006) 9 

Carnegie Classification  Carnegie Research Extensive 27 
 Carnegie Research Intensive 3 
 Carnegie Masters 5 
 Carnegie Bachelors/ Other 4 

 

Characteristic  Mean  Std.Dev  
Skewness  Kurtosis  

(Std Error)  (Std Error)  

Wealth  78171.77 12500.42 .494 (.378) 1.383 (.741) 
Size  2177.59 1819.07 1.104 (.378) -.009 (.741) 

 
Wealth: Average salary of full professors in engineering  
Size: Number of undergraduate engineering degrees awarded in 2004.  

 


