A HLM Guide

Alexander C. Yin Center for the Study of Higher Education The Pennsylvania State University

Introduction	5
Engineering Education Example	5
Guide Notation	5
The One-way ANOVA (Unconditional Model)	7
Model Evaluation	8
Mixed Procedure for Unconditional Model	8
Engineering Instructor Interaction Example	9
Engineering Instructor Interaction Results	10
Including Effects of Level-2 Predictors	14
Model Evaluation	14
Mixed Procedure for Model with Level-2 Predictors	15
Engineering Instructor Interaction Example	16
Engineering Instructor Interaction Results	17
The Random-Coefficient Model (Level-1 Variables)	21
Model Evaluation	22
Mixed Procedure for Unconditional Model	22
Engineering Instructor Interaction Example	23
Engineering Instructor Interaction Results	25
An Intercepts- and Slopes-as-Outcomes Model (Complete Model)	28
Model Evaluation	29
Mixed Procedure for Unconditional Model	29
Engineering Instructor Interaction Example	31
Engineering Instructor Interaction Results	35
Comparing Variance Structures	40
Centering	46
Contextual Models	46
Centering in SAS, SPSS, and STATA	47
Conclusion	48

HLM Table of Contents

Table of Figures

9
0
1
2
3
6
7
8
9
0
3
4
5
6
7
1
3
3
4
6
7
9
0
1
1
2
3
4
7
9

Table of Tables

	. 0
Table 2: Random and Fixed Components of the Unconditional Model	. 8
Table 3: Random and Fixed Components of a Model with Level-2 Predictors	15
Table 4: Comparing Unconditional Model and Model with only Level-2 Predictors	20
Table 5: Random and Fixed Components of a Random-coefficient Model	22
Table 6: Comparing Unconditional Model and Model with only Level-2 Predictors	27
Table 7: Random and Fixed Components of a Complete Model	30
Table 8: Comparing Unconditional Model and Model with only Level-2 Predictors	39
Table 9: Comparison of Regression Coefficient between Covariance Structures	44

Introduction

The ordinary least squares (OLS) regression often utilized in educational studies in developing predictive and explanatory models when cases/subjects are independent of each other. When this assumption is violated (e.g., subjects within a nested structure), OLS regression underestimates standard error estimates, which may lead the researcher to incorrectly conclude regression coefficient significant (Ethington, 1997). Hierarchical linear models (HLM) (also known as random coefficient models (Rosenberg, 1973), multilevel linear models (Mason et. al. 1984), or mixed linear models (Goldstein, 1986)) was developed to account for dependence among individuals within groups. HLM allows for "1) improved estimation of effects within individual units, 2) the formulation and testing of hypothesis about cross-level effects and 3) the partition of variance and covariance components among levels (Raudenbush & Bryk, 2002, p.7)." The purpose of this document is to provide a guide for users in developing a hierarchical linear model involving subjects within a nested structure (e.g., students within a school).

Engineering Education Example

Each section of this guide examines the steps in developing a hierarchical linear model utilizing the mixed linear procedure in SAS (proc mixed), SPSS (mixed), and STATA (xtmixed). To aid the process, I will explore which organizational (second level) and individual (first level) variables influence engineering students' interactions with their professors. The dataset utilized in the example was developed for the *Engineering Change (EC2000)* project sponsored by ABET and the National Science Foundation (Grant No. EEC-9812888) and conducted by faculty members in the Center for the Study of Higher Education (CSHE) at the Pennsylvania State University (Lattuca, Terenzini, & Volkwein, 2006). This nationally representative database contains 4,461 survey responses from engineering graduates of the class of 2004 in seven engineering disciplines (aerospace, chemical, civil, computer, electrical, industrial, and mechanical) in 39 different accredited engineering institutions. The sample of colleges and universities included Doctoral, Master's, and Bachelors' and Specialized Institutions.

The dependent measure for this model consist of students' responses to a 5-item scale assessing how often things occurred in their classes such as "Instructors gave me frequent feedback on my work;" "Instructors gave me detailed feedback on my work;" "Instructors guided students' learning activities rather than lecturing or demonstrating the course material;" "I interacted with instructors as part of the course;" "I interacted with instructors outside of class (including office hours, advising, socializing, etc.)" (Lattuca, Terenzini, Volkwein, 2005). This interaction construct has an alpha reliability of .87. Appendices 1 and 2 provides a list of variables and their descriptive statistics examined for this model.

The research question for our example is to investigate which organizational characteristics and individual characteristics influence engineering student's interactions with their professors.

Guide Notation

Table 1 provides HLM notation utilized throughout this guide. The x variables are usually associated with level-1 characteristics (e.g., students in our example) and w variables are associated with level-2 characteristics (e.g., engineering institutions in our example). Within the mixed procedure for SAS and SPSS, the user can specify the type of variable, which is the reason for differentiating between categorical (x_{cati} and w_{catk}) and continuous variables (x_{contj} and

w_{contl}), which is not a common HLM notation. For STATA, categorical variables must be coded as indicator variables; whereas in SAS and SPSS, categorical variables can either be coded as indicator variables or be kept in its original format. For example, an engineering discipline variable has the following values: aerospace, chemical, civil, computer, electrical, industrial and mechanical (seven possible values). In SAS and SPSS, an engineering discipline variable would suffice (as long as your properly classify it as categorical variable in the mixed procedure). However, for STATA, the user must choose to create six indicator variables (e.g., aerospace, chemical, civil, computer, electrical, and industrial with mechanical being the reference group), where 1 equals student is in that major and 0 equals students is not in that major. If all the indicators are set to zero, then the student would be majoring in mechanical engineering.

Y _{ij}	Dependent Measure of the ith individual within the jth organization
X _{cati}	ith categorical variable for level-1
X _{contj}	jth continuous variable for level-1
Wcatk	kth categorical variable for level-2
W _{contl}	1th continuous variable for level-2
β _{qj}	The intercept and regression coefficients representing the effects of the
-	level-1 independent variables on Y _{ij} in the jth organization
γ_{qs}	The intercept and regression coefficients representing the fixed effects of
	the level-1 and level-2 independent variables on Y _{ij}
$\mu_{ m qj}$	Represents random error associated with the level-2 model with a normal
	distribution (N (0, τ_{qq}))
r _{ij}	Represents random error associated with the level-1 model with a normal
	distribution (N(0, σ^2))
$\bar{x}_{.i}$	Group mean (the variable average of all the subjects within the jth
	organization)
$\bar{x}_{}$	Grand mean (the variable average of all the subjects)

Table 1: HLM Notation

The One-way ANOVA (Unconditional Model)

The unconditional model is essentially a one-way ANOVA testing whether differences exists for the dependent variables between cluster units (e.g., organizations). The general model is:

$$Y_{ij} = \mu + \alpha_j + r_{ij} \tag{1}$$

where μ is the grand mean (the cluster unit mean and not the subject mean) of the dependent measure (Y_{ij}), $\alpha_j \sim iid N(0, \tau_{00})$ and $r_{ij} \sim iid N(0, \sigma^2)$. α_j is the average contribution of the jth cluster unit to the dependent measure where the variability between organizations is τ_{00} . r_{ij} is the residual associated with the ith subject within the jth cluster unit. These residuals are assumed to be normally distributed with a variance of σ^2 . In general, the main purpose of building statistical models is to reduce the residuals' variability (i.e., we want σ^2 to be relatively small) in order to increase the model's predictability or explanatory power. Having a large residual variability suggests that much of the differences between the cluster units is left unexplained.

The following equations, decomposes the general model (equation 1) into two levels. Level-1 Model:

 $Y_{ij} = \beta_{0j} + r_{ij} \tag{2}$

The dependent value (Y_{ij}) is the measure for the ith subject within the jth cluster. r_{ij} is the residual of the ith subject within the jth cluster and is normally distributed with zero mean and a variance of $\sigma^2 (N(0, \sigma^2))$. σ^2 is a measure of variability among the subjects within the cluster units (i.e., subjects are nested within the organizations). β_{0j} is the intercept and the mean for the jth cluster unit and is modeled as a level-2 variable.

Level-2 Model:

$$\beta_{0i} = \gamma_{00} + \mu_{0i}$$
(3)

where γ_{00} is the mean of the cluster units and μ_{0j} are the random deviations that are normally distributed with a variance of τ_{00} (N(0, τ_{00})). μ_{0j} may be considered the residuals of the cluster units or the difference between a cluster unit's mean (i.e., the average of all the subjects' dependent measures within the cluster unit) and the mean of the cluster units' means. In other words, τ_{00} is the variability of the means between cluster units.

The combined model derives from substituting the level-2 model (β_{0j}) into the level-1 model's equation:

 $Y_{ij} = \gamma_{00} + \mu_{0j} + r_{ij}$ (4)

where μ_{0j} (the residuals of the cluster units) is normally distributed with zero mean and a variance of τ_{00} (N(0, τ_{00})) and r_{ij} (the residuals of the subjects within the cluster units) is normally distributed with zero mean and a variance of σ^2 (N(0, σ^2)). γ_{00} corresponds to the μ and μ_{0j} to the α_j in the general model (equation 1). This model can be split into two components, fixed (γ_{00}) and random (μ_{0j} and r_{ij}). The γ_{00} is fixed because it does not vary from subject to subject or cluster to cluster; whereas μ_{0j} varies from cluster unit to cluster unit and r_{ij} varies from subject to subject within cluster units.

Model Evaluation

Thus, the unconditional model partitions the variance into two components: 1) variance associated to cluster units (variance between cluster units - τ_{00}) and 2) variance associated to individuals within cluster units (variance within cluster units - σ^2). The intraclass correlation is the proportion of variance explained in the dependent measure (Y) by the clusters (the values for j) with respect to the total variance (variance between clusters and variance within cluster). The intraclass correlation ($\hat{\rho}$) is calculated as

$$\hat{\rho} = \frac{\tau_{00}}{\tau_{00} + \sigma^2}$$

When examining the unconditional model, we are determining whether HLM is an appropriate model by examining the significance of τ_{00} and its relative contribution to the overall model. The intraclass correlation is a measure that examine whether the portion of variance existing between clusters (i.e., τ_{00} is large with respect to σ^2) justify utilizing HLM to account for cluster unit's effects. One reason in utilizing HLM is to account for dependencies between subjects within a cluster unit; however, if little variance is attributed to the cluster unit (i.e., either τ_{00} is not significant or $\hat{\rho}$ is small) then multiple regression is sufficient, because these methods are fairly robust when model assumptions (such as independence) are violated (Ethington, 1997). This also suggests that the majority of variance is attributed to differences between subjects with minimal influence attributed to the cluster unit.

Mixed Procedure for Unconditional Model

Identifying the random and fixed components of the model is important (Table 2), when utilizing the mixed procedure in SAS and SPSS (Figure 1). Both programs utilize a line for the user to specify the random effects. The default settings for both program has the intercept included as a fixed effect, thus, there is no need to specify it in the code (for SAS this is the "model" line and for SPSS this is the "/Fixed" line).

Model	Type of	Interpretation	
Components	Variable		
γ00	Fixed	γ_{00} is the mean of the cluster units' mean.	
μ_{0j}	Random	μ_{0j} is the difference between the cluster unit mean (average of	
		the subject scores within the cluster) and the mean of the cluster	
		units' means after accounting for the level-2 predictors. A	
		significant variance (τ_{00}) implies that the intercepts differ	
		between organizations.	
r _{ij}	Random	r _{ij} is the residual of the subject's score after accounting for the	
-		cluster's effect (μ_{0i}).	

Table 2: Random and Fixed Components of the Unconditional Model

(5)

	Figure 1:	Software	Code for th	ne Unconditional	Model
--	-----------	----------	-------------	------------------	-------

SAS	proc mixed data=DATA noclprint covtest ;
	class Cluster Unit;
	model <mark>Y_{ii} = /solution;</mark>
	random intercept/sub=Cluster Unit;;
	run;
SPSS	MIXED
	Y _{ii}
	$\overline{\text{/CRITERIA}} = \text{CIN}(95) \text{ MXITER}(100) \text{ MXSTEP}(5)$
	SCORING(1) SINGULAR(0.000000000001)
	HCONVERGE(0, ABSOLUTE) LCONVERGE(0,
	ABSOLUTE)
	PCONVERGE(0.000001, ABSOLUTE)
	/FIXED = SSTYPE(3)
	/METHOD = REML
	/PRINT = SOLUTION TESTCOV
	/RANDOM INTERCEPT SUBJECT(Cluster Unit;)
	COVTYPE(UN).
STATA	xtmixed Y _{ii} Cluster Unit:, reml variance

Engineering Instructor Interaction Example

For our engineering education example, we want to examine whether instructor interaction varies significantly from institution to institution and whether the proportion of this second level variance is large enough to justify the utilization of HLM. The level-1 unconditional model is shown below:

InstructorInteraction_{ij} = $\beta_{0j} + r_{ij}$

Where $j = Cal State Polytechnic, Cal State Sacromento, Case Western, ..., Texas A & M, and MIT and <math>i = 1, 2, ..., n_{institution}$. In other words, i is the ith student within the institution, where n equal the number of student responses within an institution (see Appendix 2 for the n's of each institution). The residual (r_{ij}) is normally distributed with zero mean and a variance of σ^2 .

The level two model is:

$$\beta_{0j} = \gamma_{00} + \mu_{0j} \tag{7}$$

where γ_{00} is the mean of the institutions' means on instructor interactions (i.e., average of the instructor interaction within the institution) and μ_{0j} is the deviation of the jth institution from the grand mean. μ_{0j} is assumed to be normally distributed with a variance of τ_{00} (N(0, τ_{00})). In other words, τ_{00} is the variability of the instructor interaction means between the institutions.

Substituting equation 6 into 5, the complete model is

InstructorInteraction_{ij} =
$$\gamma_{00} + \mu_{0j} + r_{ij}$$
 (8)

(6)

 γ_{00} is the grand mean (i.e, the mean of the institutions' means on instructor interactions); μ_{0j} is the deviation of the jth institution; and r_{ij} is the residual of the ith student within the jth institution. Figure 2 provides the SAS, SPSS, and STATA code for this example.

rigure 2. Coue for the Engineering	Education Example (Cheonational Woder)
SAS	proc mixed data=ABET noclprint covtest ;
	class Institution;
	model InstructorInteraction = /solution;
	random intercept/sub=Institution;
	run;
SPSS	MIXED
	InstructorInteraction
	/CRITERIA = CIN(95) MXITER(100) MXSTEP(5)
	SCORING(1) SINGULAR(0.00000000000)
	HCONVERGE(0, ABSOLUTE) LCONVERGE(0,
	ABSOLUTE)
	PCONVERGE(0.000001, ABSOLUTE)
	/FIXED = SSTYPE(3)
	/METHOD = REML
	/PRINT = SOLUTION TESTCOV
	/RANDOM INTERCEPT SUBJECT(Institution)
	COVTYPE(UN).
STATA	xtmixed InstructorInteraction institution:, reml variance

Figure 2: Code for the Engineering Education Example (Unconditional Model)

Engineering Instructor Interaction Results

The τ_{00} and σ^2 estimates are found under the section "Covariance Parameter Estimates" for SAS¹, "Estimates of Covariance Parameters" for SPSS², and "Random-effects Parameters" for STATA (Figure 3). The parameter estimates from all programs are the same with τ_{00} equal to .09957 with a p-value less than .0001 (see yellow highlight in Figure 3) and σ^2 is .4194 p-value less than .0001³ and both are significant at an alpha of .01⁴. Since τ_{00} is significant, the intercepts in the model varies from one institution to another. Consequently, this suggests that instructor interaction differ between institutions.

The intraclass correlation ($\hat{\rho}$) is .19 (.09957/ (.09957+ .4194)). Hence the proportion of variation in instructor interaction between schools is 19 percent. Since the intraclass correlation is greater than .05, HLM would be an appropriate statistical technique (Porter, 2005).

¹ If "Covariance Parameter Estimates" is not found in the output, check to see if "covtest" is included in the proc mixed statement.

 $^{^{2}}$ If "Estimates of Covariance Parameters" is not found in the output, check to see if "testcov" is included in the print line in the mixed procedure syntax.

³ SPSS provides the p-value for a 1-tail test; divide this value by 2 to get the same value as the SAS output

 $^{^4}$ STATA and SPSS provide 95% confidence intervals. If the confidence interval does not include zero (0), then the variance is significant at an alpha of .05 (1-.95).

Figure 3: Estimates of Covariance Parameters for Unconditional Model				
SAS Output				
Covariance Parameter Estimates				
Standard Z				
Cov Parm Subject Estimate Error Value Pr Z				
Intercept Institution 0.09957 0.02497 3.99 <.0001				
Residual 0.4194 0.008922 47.01 <.0001				
SPSS Output				
Covariance Parameters				
Estimates of Covariance Parameters(a)				
95%	Confidence			
	nterval			
Std. Lower	Upper			
Parameter Estimate Error Wald Z Sig. Bound	Bound			
Residual 419404 008922 47 010 000 4022	78 437260			
Intercent Variance	.137200			
$\begin{bmatrix} \text{subject} = & 099571 & 024967 & 3.988 & 000 & 0609 \end{bmatrix}$	12 162767			
	12 .102707			
a Dependent Variable: INTERACTION Interaction Scale: Stu a16k l m n o				
a Dependent Variable. INTERACTION Interaction Scale. Stu (10k,i,in,i,o.				
SIAIA Output				
Pandom offacts Parameters Estimate Std Err [05% Conf Interval]				
institution: Identity				
$\frac{1}{10000000000000000000000000000000000$				
$\frac{\text{val}(-\text{colls})}{+}$				
var(Residual) = 4194015 0080216 402275 4272571				
var(iccsidual) .7177015 .0007210 .402275 .4572571				

The fixed effects for the unconditional model can be found under the "Solution for Fixed Effects" in SAS output, "Estimates of Fixed Effects" in SPSS output, and "interaction" (the name of the dependent variable) in STATA output (Figure 4). The institutional mean estimate (γ_{00}) for instructor interaction is 2.3213 (p-value is .0000), which is significant at an alpha of .01.

Figure 4: Parameter Estimates for Unconditional Model

SAS Out	put							
			Solu	tion for	Fixed Eff	ects		
		Sta	andard					
	Effect	Estimat	e Error	DF	t Value	Pr > t		
	Intercept	2.321	3 0.0521	0 38	44.56	<.000	1	
SPSS Ou	tput							
			Type III	Tests of	f Fixed E	ffects(a)		
	-							
	Numera	tor Der	nominator					
Source	df		df	F	Si	g.		
Intercep	t	1	35.788	1985.1	62	.000		
a Depend	a Dependent Variable: INSTRUCTORINTERACTION Interaction Scale: Stu g16k,l,m,n,o.							
						meraction	i Deale. Dia qit	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-						interaction	i beale. Sta qre	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			Estim	ates of	Fixed Ef	fects(a)	i Soule. Stu qite	
			Estim	ates of	Fixed Ef	fects(a)	95% Confide	ence Interval
		St	Estim	ates of	Fixed Ef	fects(a)	95% Confide	ence Interval Upper
Paramet	er Estima	St te Err	Estim d. ror d	ates of	Fixed Ef	fects(a) Sig.	95% Confide Lower Bound	ence Interval Upper Bound
Paramet	er Estima t 2.32130	St te Err 00 .052	Estim d. cor d 2099 35	ates of a	Fixed Ef t 44.555	fects(a) Sig.	95% Confide Lower Bound 2.215616	ence Interval Upper Bound 2.426985
Paramet Intercep a Depend	er Estima t 2.32130 lent Variab	St te Ern 00 .052 le: INST	Estim d. cor d 2099 35 RUCTORI	ates of 1	t 44.555 CTION	fects(a) Sig. .000 Interaction	95% Confide Lower Bound 2.215616 n Scale: Stu q16	ence Interval Upper Bound 2.426985 5k,1,m,n,o.
Paramet Intercep a Depend STATA	er Estima t 2.32130 lent Variab Dutput	St te Ern 00 .052 le: INST	Estim d. cor d 2099 35 RUCTORI	ates of 1 f 7.788 NTERA	t 44.555 CTION	fects(a) Sig. .000 Interaction	95% Confide Lower Bound 2.215616 n Scale: Stu q16	ence Interval Upper Bound 2.426985 5k,1,m,n,o.
Paramet Intercep a Depend STATA	er Estima t 2.32130 lent Variab Dutput	St te Ern 00 .052 le: INST	Estim d. cor d 2099 35 RUCTORI	ates of i	t 44.555 CTION	fects(a) Sig. .000 Interaction	95% Confide Lower Bound 2.215616 n Scale: Stu q16	ence Interval Upper Bound 2.426985 5k,l,m,n,o.
Paramete Intercep a Depend STATA interaction	er Estima t 2.32130 lent Variab Dutput on Coe	St te Ern 00 .052 le: INST f. Std	Estim d. 2099 35 RUCTORI	ates of 1 if 788 NTERA P> 1	t 44.555 CTION z [95%	fects(a) Sig. .000 Interaction	95% Confide Lower Bound 2.215616 n Scale: Stu q16	ence Interval Upper Bound 2.426985 5k,1,m,n,o.
Paramet Intercep a Depend STATA interactio	er Estima t 2.32130 lent Variab Dutput on Coe:	St te Ern 00 .052 le: INST f. Std	Estim d. cor d 2099 35 RUCTORI . Err. z	ates of i	t 44.555 CTION z [95%	fects(a) Sig. .000 Interaction	95% Confide Lower Bound 2.215616 n Scale: Stu q16 terval]	ence Interval Upper Bound 2.426985 5k,l,m,n,o.
Paramet Intercep a Depend STATA interactio	er Estima t 2.32130 lent Variab Dutput on Coe -+	St te Err 00 .052 1e: INST f. Std 305 .052	Estim d. cor d 2099 35 RUCTORI . Err. z 20993 44	ates of f .788 NTERA P> .56 0.0	t 44.555 CTION z [95% 00 2.21	fects(a) Sig. .000 Interaction 6 Conf. In 9193 2.	95% Confide Lower Bound 2.215616 n Scale: Stu q16 terval] 423418	ence Interval Upper Bound 2.426985 5k,1,m,n,o.

The SAS and SPSS information criteria⁵ output are all equal for the -2 restricted log likelihood, Akaike's information criterion (AIC), and Hurvich and Tasi's Criterion (AICC) (Figure **5**). The Schwarz's Bayesian Criterion (BIC) is slightly different and may be to differences in the software's algorithms. The information from these fit statistics will be useful when comparing models involving instructor interaction.

rigure 5. mormat							
SAS Output							
	Fit Statistics						
	-2 Res Log Likelihood 8906.9						
	AIC (smaller	is better) 8910.9					
	AICC (smalle	r is better) 8910.	9				
	BIC (smaller	is better) 8914.2					
SPSS Output	X						
-		Information Cri	iteria(a)				
		-2 Restricted Log	0006.014				
		Likelihood	8906.914				
		Akaike's					
		Information	8910.914				
		Criterion (AIC)					
		Hurvich and					
		Tsai's Criterion 8910 917					
		(AICC)					
	Bozdogan's						
		Criterion (CAIC) 8925.720					
		Schwarz's					
		Bayesian 8923.720					
		Criterion (BIC)					
The information	criteria are disp	layed in smaller-is-b	etter forms.	•			
a Dependent Var	riable: INSTRU	CTORINTERACTIO	ON Interac	tion Scale: Stu q16k,l,m,n,o.			

Figure 5: Information Criteria

⁵ For Stata, use the command "estat ic" after running the xtmixed command.

Including Effects of Level-2 Predictors

When examining the effects of the second level predictors, the goal is to determine whether the cluster unit characteristic (second level predictor w_{conti} and w_{cati}) has a statistical significant influence on the dependent measure (Y_{ij}). Thus, the level-1 model is the same as the unconditional model's level-1:

$$Y_{ij} = \beta_{0j} + r_{ij} \tag{9}$$

The dependent value (Y_{ij}) is the measure for the ith subject within the jth cluster. r_{ij} is the residual of the ith subject within the jth cluster and is normally distributed with zero mean and a variance of $\sigma^2 (N(0, \sigma^2))$. However, because cluster predictors are included the level-2 model becomes:

$$\beta_{0j} = \gamma_{00} + \gamma_{0cat1} * w_{cat1} + \dots + \gamma_{0n} * w_{catn} + \gamma_{0cont1} * w_{cont1} + \dots + \gamma_{0contm} * w_{contm} + \mu_{0j}$$
(10)

where γ_{00} is the mean of the treatments for the reference group(s) of the categorical predictor(s) and/or when the continuous predictors are equal to zero ($w_{cont1}, \ldots, w_{contm}$). The deviations or residuals of the cluster units (μ_{0j}) are random and normally distributed with a variance of τ_{00} (N(0, τ_{00})). Thus, τ_{00} is the variability of the means between treatments after accounting the cluster unit's predictor variables ($w_{cat1}, \ldots, w_{cont1}, \ldots, w_{contm}$).

The combined model derives from substituting the level-2 model (10) into the level-1 model's equation (9):

$$Y_{ij} = \gamma_{00} + \gamma_{0cat1} * w_{cat1} + \dots + \gamma_{0n} * w_{catn} + \gamma_{0cont1} * w_{cont1} + \dots + \gamma_{0contm} * w_{contm} + \mu_{0j} + r_{ij}$$
(11)

Model Evaluation

The "proportion reduction in variance" or "variance explained" (Raudenbush & Bryk, 2002, p. 74) measures the amount of variance explained by the level-2 predictors that is attributed to the cluster units. When creating and evaluating a model that includes level-2 predictors, the goal is to reduce the level-2 variability (τ_{00}) from the unconditional model to a model including level-2 predictors. The proportion reduction in variance is:

$$=\frac{\tau_{00}(Unconditional\ Model) - \tau_{00}(Model\ with\ Level\ 2\ predictors)}{\tau_{00}(Unconditional\ Model)}$$
(12)

The possible values for this measure are between one and zero, where a value of one (1) suggests that the level-2 predictors explains all the variance attributed to the cluster unit and a value of zero (0) suggests the level-2 predictors explains none of the variance attributed to the cluster unit.

The other goal when evaluating a model with level-2 predictors is to examine the significance of the variance of the cluster unit's residuals (τ_{00}). If τ_{00} is not significant, the level-2 predictors in the model explain most of the variance associated with the cluster units.

Similar to an OLS, the next step is to evaluate the significance of the level-2 predictors. The null hypothesis is that the γ_{qs} is equal to zero (H_o: $\gamma_{qs} = 0$), while the alternative hypothesis is that the γ_{qs} is not equal to zero (H_a: $\gamma_{qs} \neq 0$). If these parameter estimates ($\gamma_{0cat1}, \ldots, \gamma_{0catn}, \gamma_{0cont1}, \ldots, \gamma_{0contm}$) are significant, the associated predictors are likely to be included in the final model.

Mixed Procedure for Model with Level-2 Predictors

Identifying the random and fixed components of the model is important (Table 3), when utilizing the mixed procedure in SAS, SPSS, and STATA (Figure 6). Both programs utilize a line ("random" in SAS and "/random" in SPSS) for the user to specify the random effects; while for STATA, the random effects are specified after declaring the nested structure ("|| cluster unit;"). The default settings for all three programs has the intercept included as a fixed effect, thus, there is no need to specify it in the code (for SAS this is the "model" line and for SPSS this is the "/Fixed" line).

Model	Type of	Interpretation	
Components	Variable		
γ00	Fixed	γ_{00} is the mean of the cluster units' mean for the reference	
		group(s) of the categorical predictor(s) and/or when the	
		continuous predictors are equal to zero.	
$\gamma_{cati0} * w_{cati}$	Fixed	γ_{cati0} is the contribution of a categorical level-2 predictor to the	
		dependent measure. A significant γ_{cati0} implies that the level-2	
		predictor should be included in the final model.	
γ_{contj0} * W_{contj}	Fixed	γ_{contj} is the contribution of a continuous level-2 predictor to the	
		dependent measure. A significant γ_{contj0} implies that the level-2	
		predictor should be included in the final model.	
μ_{0j}	Random	μ_{0j} is the difference between the cluster unit mean (average of	
		the subject scores within the cluster) and the mean of the cluster	
		units' means after accounting for the level-2 predictors. A	
		significant variance (τ_{00}) implies that the intercepts differ	
		between organizations.	
r _{ij}	Random	r _{ij} is residual of the subject's score after accounting for the	
		cluster's effect (μ_{0j}) and the level-2 predictors.	

Table 3: Random and Fixed Components of a Model with Level-2 Predictors

Figure 6: Software Code for Model with Only Level-2 Predictors

SAS	proc mixed data=DATA noclprint covtest ;
	class Cluster Unit w _{cat1} w _{catn} ;
	model Y_{ij} = w_{cat1} w_{catn} w_{cont1} w_{2contm} /solution ddfm=bw;
	random intercept/sub= Cluster Unit;
	run;
SPSS	MIXED
	Y _{ij} BY w _{cat1} w _{catn} WITH w _{cont1} w _{2contm}
	/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)
	SINGULAR(0.00000000001) HCONVERGE(0, ABSOLUTE)
	LCONVERGE(0, ABSOLUTE)
	PCONVERGE(0.000001, ABSOLUTE)
	/FIXED = W _{cat1} W _{catn} W _{cont1} W _{2contm} SSTYPE(3)
	/METHOD = REML
	/PRINT = SOLUTION TESTCOV
	/RANDOM INTERCEPT SUBJECT(Cluster Unit) COVTYPE(UN)
STATA	xtmixed Y_{ij} w_{cat1} w_{catn} w_{cont1} w_{2contm} Cluster Unit:,
	covariance(unstructured) reml variance

Engineering Instructor Interaction Example

For our engineering education example, we want to examine which organizational characteristics (level-2 predictors) influences interactions between instructors and students between institutions. For this example, we will be examining whether an institution's Carnegie classification (research intensive, research extensive, masters' and bachelor's/other) influences instructor interactions. The level-1 model is shown below:

InstructorInteraction_{ij} =
$$\beta_{0j} + r_{ij}$$
 (13)

Where $j = Cal State Polytechnic, Cal State Sacramento, Case Western, ..., Texas A & M, and MIT and <math>i = 1, 2, ..., n_{institution}$. In other words, i is the ith student within the institution, where n equal the number of student responses within an institution (see Appendix 2 for the n's of each institution). The residual (r_{ij}) is normally distributed with zero mean and a variance of σ^2 .

Level-2 Model:

 $\beta_{0j} = \gamma_{00} + \gamma_{0carn_cat} * carn_cat + \mu_{0j}$

(14)

where γ_{00} is the mean of the institutions' means on instructor interactions (i.e., average of the instructor interaction within the institution) at bachelors/others universities and μ_{0j} is the deviation of the jth institution from the conditional mean. μ_{0j} is assumed to be normally distributed with a variance of τ_{00} (N(0, τ_{00})). In other words, τ_{00} is the variability of the instructor interaction means between the institutions after accounting for the Carnegie classification⁶.

⁶ Since Carnegie classification is a categorical variable, the output will estimate n-1 γ_{0cat1} 's, where n is the number of levels within the categorical variable (for this example, n is 4). The user can recode a categorical variable into n-1 indicator variables. For SAS and SPSS, the default reference group is the last category; however, in SAS, the user can classify the reference group in the class statement by utilizing the following command (ref=).

Substituting equation 14 into 13, the complete model is

InstructorInteraction_{ij} =
$$\gamma_{00} + \gamma_{0cat1} * carn_cat + \mu_{0j} + r_{ij}$$
 (15)

 γ_{00} is mean of the institutions' means on instructor interactions at research institutions (which was the reference group for the carnegie classification variable); γ_{0cat1} is the contribution to the instructor's interaction score at a certain Carnegie classification, μ_{0j} is the deviation of the jth institution after accounting for the Carnegie classification; and r_{ij} is the residual of the ith student within the jth institution after accounting for the Carnegies classification. Figure 7 provides the SAS, SPSS, and STATA code for this example.

	Figure 7: Code for th	ne Engineering	Education Exam	ple (With Level-2 Predictors)	
--	-----------------------	----------------	----------------	-------------------------------	--

SAS	proc mixed data=ABET noclprint covtest ;
	class Institution carn_cat ;
	<pre>model InstructorInteraction = carn_cat /solution ddfm=bw;</pre>
	random intercept/sub=Institution;
	run;
SPSS	MIXED
	InstructorInteraction BY carn_cat
	/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)
	SINGULAR(0.00000000001) HCONVERGE(0, ABSOLUTE)
	LCONVERGE(0, ABSOLUTE)
	PCONVERGE(0.000001, ABSOLUTE)
	$/FIXED = carn_cat SSTYPE(3)$
	/METHOD = REML
	/PRINT = SOLUTION TESTCOV
	/RANDOM INTERCEPT SUBJECT(Institution) COVTYPE(UN).
STATA	xtmixed InstructorInteraction carn_cat_1 carn_cat_2 carn_cat_3 institution:,
	covariance(unstructured) reml variance

Engineering Instructor Interaction Results

The τ_{00} and σ^2 estimates are found under the section "Covariance Parameter Estimates" for SAS⁷, "Estimates of Covariance Parameters" for SPSS⁸, and "Random-effects Parameters" for STATA (Figure 8). The parameter estimates from all programs are the same with τ_{00} equal to .03604 with a p-value of .0003 (see yellow highlight in Figure 8) and σ^2 is .4195 with a p-value less than .0001⁹; both are significant at an alpha of .01¹⁰.

⁷ If "Covariance Parameter Estimates" is not found in the output, check to see if "covtest" is included in the proc mixed statement.

⁸ If "Estimates of Covariance Parameters" is not found in the output, check to see if "testcov" is included in the print line in the mixed procedure syntax.

⁹ SPSS provides the p-value for a 1-tail test; divide this value by 2 to get the same value as the SAS output

¹⁰ STATA and SPSS provide 95% confidence intervals. If the confidence interval does not include zero (0), then the variance is significant at an alpha of .05 (1-.95).

The proportion of the variance explained by the institution's Carnegie classification is 64 percent ((.099571-.03604)/.099571, where .099571 is the τ_{00} of the unconditional model calculated in the previous section). This implies that 64 percent of the variance in the means of the institution's interaction between instructors and students (i.e., the group mean of the instructor interactions) can be explained by the institution's Carnegie classification. This does not imply that the Carnegie classification explains 64 percent of the variance in interaction measure for all students.

Since τ_{00} is significant, 36 percent (100-64) of the unexplained variance is associated with the cluster unit that may be described by other level-2 predictor(s).

The intraclass correlation ($\hat{\rho}$) is .079 (.03604/ (.03604+ .4195)); the proportion of variation in instructor interaction between schools having the same classification is 7.9 percent.

Fig	ure 8.	Fetimates	of Covariance	Parameters fo	r Model with	Only I e	vel_? Predictors
rig	ui e o.	Lounates	of Covariance	a and the ters to	n with	I Omy Le	ver-2 1 redictors

SAS Output						
	Covaria	ance Paran	neter Estim	ates		
	Stand	ard Z				
Cov Parm Subject	et Estin	nate Eri	or Value	e Pr Z		
5						
Intercept Instituti	on 0.0360	04 0.010	54 3.42	0.0003		
Residual	0.4195	0.008925	47.00	<.0001		
SPSS Output						
Covariance Parameters						
Estimates of Covariance P	arameters((a)				
					95% Con	fidence
					Inter	val
		Std			Lower	Upper
Parameter	Estimate	Error	Wald Z	Sig.	Bound	Bound
Residual	419497	008925	47 001	000	402363	437360
Intercept Variance			.,			
[subject =	036039	010541	<mark>3 419</mark>	001	020315	063936
Institution		.010011	5.11		.020010	
a Dependent Variable: INT	FRACTION	V Interactiv	on Scale: S	tu a 16k l m	n n o	
STATA Output		v meracu	on Scale. S	iu q10k,1,11	1,11,0.	
STATA Output						
Random effects Parameter	Eat	imata S	td Err	 [05% Conf	Interval	
	5 LSi	inate 5	u . EII.	[95/0 COIII.	. Intervarj	
institution: Identity						
		0260209	0105/12	020215	0620265	
	l i	.0300398	.0103412	.020313	.0039303	
		4104027	0000252	4022602	4272560	
Var Recidiiali	I			/111/36014	(/ () () N	

The fixed effects for the model with level-2 predictors can be found under the "Solution for Fixed Effects" in SAS output, "Estimates of Fixed Effects" in SPSS output, and "" in STATA output (Figure 9). For this example, the interpretation of the intercept (γ_{00}) is the average

instructor interaction at Bachelor's institution (the reference group for the Carnegie's variable) is 2.9930. The average instructor interaction decreases .8612, .5350, and .5210 at a research extensive, research intensive, and Masters institution with respect to a Bachelor's institution. The gamma estimates (γ) were all significant at an alpha of .05.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Figure 9: Pa	aramete	er Estima	ates fo	r Model wi	th Only Le	vel-2 Predic	tors			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SAS Outp	out									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					So	lution for F	Fixed Effect	S			
Effect carn_cat Estimate Error DF t Value Pr > t Intercept 2.9930 0.1067 35 28.06 <.0001				St	andard						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Effec	et o	carn_cat	Esti	mate I	Error DI	F t Value	$\Pr > t $			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Inter	cept		2.993	30 0.10	67 35	28.06 <	<.0001			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	carn	cat	1	-0.81	.62 0.1	135 35	-7.19	<.0001			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	carn	cat	2	-0.53	0.1	633 35	-3.28	0.0024			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	carn	cat	3	-0.52	210 0.14	426 35	-3.65	0.0008			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	carn	cat	4	0							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		-	Туре	3 Tes	ts of Fixed	l Effects					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			N	um	Den						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Et	ffect	DF	DF F	Value Pr	> F				
SPSS Output Fixed Effects Type III Tests of Fixed Effects(a) Source Interactor Denominator F Sig. Intercept 1 35.297 2748.324 $.000$ a Dependent Variable: INTERACTION Interaction Scale: Stu q16k,1,m,n,o. Estimates of Fixed Effects(b) Parameter Estimate Error df t Sig. Bound Bound Bound Intercept 2.992996 .106667 36.967 28.059 .000 2.776862 3.209131 [carn_cat=1.00] 816240 .113511 35.931 -7.191 .000 2.776862 3.209131 [carn_cat=2.00] 535025 .163291 35.564 -3.277 .002 866334 203715 [carn_cat=3.00] 520971 .142557 36.383 -3.654 .001 809985 231957 [carn_cat=4.00] 0(a) 0 a This parameter is set to zero because it is redundant. b b Dependent Variable: INSTRUCTORINTERACTION Interaction Scale: Stu q16k,1,m,n,o. <td colspa="</td"><td></td><td>ca</td><td>rn_cat</td><td>3</td><td>35 19</td><td>9.05 < .00</td><td>01</td><td></td><td></td><td></td></td>	<td></td> <td>ca</td> <td>rn_cat</td> <td>3</td> <td>35 19</td> <td>9.05 < .00</td> <td>01</td> <td></td> <td></td> <td></td>		ca	rn_cat	3	35 19	9.05 < .00	01			
Type III Tests of Fixed Effects(a) Source df df Type III Tests of Fixed Effects(a) Source df df F Sig. Intercept 1 35.297 2748.324 .000 a Dependent Variable: INTERACTION Interaction Scale: Stu q16k,l,m,n,o. Estimates of Fixed Effects(b) Parameter Estimate Error df t Sig. Bound Bound Intercept 2.992996 .106667 36.967 28.059 .000 2.776862 3.209131 [carn_cat=1.00] 816240 .113511 35.931 -7.191 .000 -1.046465 586015 [carn_cat=2.00] 535025 .163291 35.564 -3.277 .002 866334 203715 [carn_cat=4.00] 0(a) 0 - - - - - a This parameter is set to zero because it is redundant. b bependent Variable: INSTRUCTORINTERACTION Interaction Scale: Stu q16k,l,m,n,o. STATA Output	SPSS Out	put									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Fixed Eff	ects									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					Type I	II Tests of	Fixed Effe	cts(a)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Num	nerator	Den	ominator						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Source		df		df	F	Sig.				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Intercept		1		35.297	2748.324	.00	0			
a Dependent Variable: INTERACTION Interaction Scale: Stu q16k,1,m,n,o. Estimates of Fixed Effects(b) Parameter Estimate Parameter Estimate Error df t Std. Lower Upper Intercept 2.992996 .106667 36.967 28.059 .000 2.776862 3.209131 [carn_cat=1.00] 816240 .113511 35.931 -7.191 .000 -1.046465 586015 [carn_cat=2.00] 535025 .163291 35.564 -3.277 .002 866334 203715 [carn_cat=3.00] 520971 .142557 36.383 -3.654 .001 809985 231957 [carn_cat=4.00] 0(a) 0 a This parameter is set to zero because it is redundant. b Dependent Variable: INSTRUCTORINTERACTION Interaction Scale: Stu q16k,1,m,n,o. Std. Err. z P> z [95% Conf. Interval]	carn cat 3 35.002 19.050 .000										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	a Depende	nt Vari	able: IN	TERA	CTION I	nteraction S	Scale: Stu o	16k.l.m.n.o			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1				Е	stimates o	f Fixed Eff	ects(b)			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									95% Confide	nce Interval	
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					Std.				Lower	Upper	
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	Parameter		Estima	te	Error	df	t	Sig.	Bound	Bound	
$\begin{tabular}{ carn_cat=1.00] \\ [carn_cat=2.00] \\ [carn_cat=2.00] \\ [carn_cat=2.00] \\ [carn_cat=3.00] \\ [carn_cat=3.00] \\ [carn_cat=4.00] \\ (a) \\ (b) \\ (a) \\ (b) \\ (carn_cat=4.00] \\ (carn_$	Intercept		2.9929	96	.106667	36.967	28.059	.000	2.776862	3.209131	
$\begin{tabular}{ carn_cat=2.00] carn_cat=2.00] c.535025 & .163291 & 35.564 & -3.277 & .002 &866334 &203715 \\ carn_cat=3.00] & .520971 & .142557 & 36.383 & -3.654 & .001 &809985 &231957 \\ carn_cat=4.00] & 0 & 0 & . & . & . & . & . & . & . & .$	[carn cat=	=1.00]	8162	40	.113511	35.931	-7.191	.000	-1.046465	586015	
$\begin{array}{ c crn_cat=3.00] \\ \hline [carn_cat=4.00] \\ \hline 0(a) \\ \hline 0(a) \\ \hline 0(a) \\ \hline 0 \\ \hline $	[carn cat=	=2.00]	5350	25	.163291	35.564	-3.277	.002	866334	203715	
$\begin{array}{ c crn_cat=4.00] \\ \hline [carn_cat=4.00] \\ \hline 0(a) \\ \hline 0 \\ \hline 0 \\ \hline . \\ . \\$	[carn_cat=	=3.001	- 5209	71	142557	36 383	-3 654	001	- 809985	- 231957	
a This parameter is set to zero because it is redundant. b Dependent Variable: INSTRUCTORINTERACTION Interaction Scale: Stu q16k,l,m,n,o. STATA Output	[carn_cat=	=4.001	0	(a)	0					/	
a This parameter is set to zero occuse it is redundant. b Dependent Variable: INSTRUCTORINTERACTION Interaction Scale: Stu q16k,l,m,n,o. STATA Output	a This para	meter	is set to '	zero h	ecause it i	s redundant	•	•			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	b Depende	nt Vari	able: IN	STRU	CTORIN	TERACTIC). DN Interact	ion Scale [.] S	Stu a 16k l m n a		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STATA O	utput		01100	<u>eronun</u>			ion Soure.	1 1 1 1 1 1 1 1 1 1	•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	instructori	nteracti	on C	Coef.	Std. I	E rr. z	P> z [9	95% Conf. 1	[nterval]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		+ 1		01600	1 112514		0.000 1		5027526		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	carn_cat_	1 2	2	51023 24005	1 .113510	JY - /.1Y	0.000 -1	.038/08	373/330 140507		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	carn_cat_	2	5:)4993.)00 <i>50</i> /	5 .10329.	11 - 5.28	0.000 9	833042. 002642 -	14930/		
	carn_cat_	5 	54	20730. 00200	2 .14233 1 10666	10 -3.03 71 20 04	0.0008	0030432 782027 2	2413481		
			۷.2	77479	1 .10000	/+ 20.00	0.000 2	.103721 3	.202030		

The SAS and SPSS information criteria¹¹ output are all equal for the -2 restricted log likelihood, Akaike's information criterion (AIC), and Hurvich and Tasi's Criterion (AICC) (Figure 10). The Schwarz's Bayesian Criterion (BIC) is slightly different and may be to differences in the software's algorithms. The fit statistics will be useful when comparing models involving instructor interaction (Table 4). The -2 restricted log likelihood, AIC, AICC, and BIC are smaller for the model with only level-2 predictors, which implies this model is better than the unconditional (one-way Anova).

Figure 10. Information Criteria for whoder with Only Level-2 Fredictors							
SAS Output							
	Fit Statistics						
-2 Res Log Li	kelihood 8877.	5					
AIC (smaller	is better) 8881.5						
AICC (smalle	r is better) 8881.	5					
BIC (smaller i	s better) 8884.8						
SPSS Output							
	Information Cri	iteria(a)					
	-2 Restricted Log	0077 400					
	Likelihood						
	Akaike's						
	Information	8881.489					
	Criterion (AIC)						
	Hurvich and						
	Tsai's Criterion	8881.492					
	(AICC)						
	Bozdogan's	0006 204					
	Criterion (CAIC)	8890.294					
	Schwarz's						
	Bayesian 8894.294						
	Criterion (BIC)						
The information criteria are displ	layed in smaller-is-b	etter forms.					
a Dependent Variable: INSTRU	CTORINTERACTI	ON Interac	tion Scale: Stu q16k,l,m,n,o.				

Figure 10:	Information	Criteria for	Model with	Only L	evel-2 Predictors	

	TT 114 INT 1	1 137 11 141 1	
Table 4. Comparine	t I neondifional Mode	and Model with on	v I evel_/ Predictors
$1 a \nu i c \tau_1 c \nu m \nu a r m z$	s Oncontational Mout	and mouth with the	1 L(1) -2 I (u) (0) 3
	3		

Information Criteria	Unconditional Model	Model with only level-2 Predictors
-2 Res Log Likelihood	8906.914	8877.489
AIC	8910.914	8881.489
AICC	8910.917	8881.492
CAIC	8925.720	8896.294
BIC	8923.720	8894.294

¹¹ For Stata, use the command "estat ic" after running the xtmixed command.

The Random-Coefficient Model (Level-1 Variables)

For the random-coefficient model, the researcher is examining whether the level-1 predictors have a significant influence on the dependent measure (the fixed component of the model) and whether these influences differ between cluster units (the random component of the model). Thus, the level-1 model appears very similar to a traditional OLS regression model:

Level-1 Model:

$$Y_{ij} = \beta_{0j} + \beta_{cat1j} * x_{cat1} + \dots + \beta_{catnj} * x_{catn} + \beta_{cont1j} * x_{cont1} + \dots + \beta_{contmj} * x_{contm} + r_{ij}$$
(16)

The dependent value (Y_{ij}) is the measure for the ith subject within the jth cluster unit. r_{ij} is the residual of the ith subject within the jth cluster unit and is normally distributed with zero mean and a variance of σ^2 (N(0, σ^2)) after accounting for the level-1 predictors. The β 's in the level-1 model are

Level-2 Model

$\beta_{0j} = \gamma_{00} + \mu_{0j}$		(17)
$\beta_{cat1j} = \gamma_{cat10} + \mu_{cat1j}$		(18)
$\beta_{\text{catnj}} = \gamma_{\text{catn0}} + \mu_{\text{catnj}}$		(19)
$\beta_{\text{cont1j}} = \gamma_{\text{cont10}} + \mu_{\text{cont1j}}$		(20)
$\beta_{\text{contmj}} = \gamma_{\text{cont10}} + \mu_{\text{contmj}}$		(21)

where the γ 's (γ_{00} , γ_{cat10} , ..., γ_{catn0} , γ_{cont10} ,..., γ_{cont10}) is the average intercept/or slope across the cluster units and μ_{qj} 's (i.e., μ_{0j} , μ_{cat1j} , ..., μ_{catnj} , μ_{cont1j} , ..., μ_{contmj}) are the random deviations that are normally distributed with a variance of τ_{qq} (N(0, τ_{qq})). μ_{jj} 's are interpreted as the unique contributions (or residual) of the jth cluster unit to the β 's, where $\tau_{qq's}$ is the variability of these unique contributions between cluster units. This model is known as the random-coefficient model, since the coefficients may vary from cluster unit to cluster unit (i.e., the β 's may have different values depending on the subject's cluster unit). In contrast, differences between cluster units are not accounted for in an OLS regression model; thus, the β 's in that model do not vary from subject to subject. If the β 's associated τ_{qq} is significant, then the researcher needs to model the coefficient as random.

Substituting equations 17 through 21 into equation 16, the combined model is

$$Y_{ij} = \gamma_{00} + \mu_{0j} + (\gamma_{cat10} + \mu_{cat1j})^* x_{cat1} + \dots + (\gamma_{catn0} + \mu_{catnj})^* x_{catn} + (\gamma_{cont10} + \mu_{cont1j})^* x_{cont1} + \dots + (\gamma_{contm0} + \mu_{contmj})^* x_{contm} + r_{ij}$$
(22)
$$Y_{ij} = \gamma_{00} + \gamma_{cat10}^* x_{cat1} + \dots + \gamma_{catn0}^* x_{catn} + \gamma_{cont10}^* x_{cont1} + \dots + \gamma_{contm0}^* x_{contm} + \mu_{cat1j}^* x_{cat1} + \dots + \mu_{catnj}^* x_{catn} + \mu_{cont1j}^* x_{cont1} + \dots + \mu_{contmj}^* x_{contm} + r_{ij}$$
(23)

Model Evaluation

The "proportion reduction in variance" or "variance explained" (Raudenbush & Bryk, 2002, p. 74) measures the amount of variance explained by the level-1 predictors. When creating and evaluating a model that includes level-1 predictors, the goal is to reduce the residual's variance in the level-1 model (σ^2) from the unconditional model to a model including level-1 predictors. The proportion reduction in variance is:

$$=\frac{\sigma^{2}(Unconditional\ Model) - \sigma^{2}(Model\ with\ Level-1\ predictors)}{\sigma^{2}(Unconditional\ Model)}$$
(24)

The possible values for this measure are between one and zero, where a value of one (1) suggests that the level-1 predictors explains all the variance attributed to the subject and a value of zero (0) suggests the level-1 predictors explains none of the variance attributed to the subject.

The other goal when evaluating a model with level-1 predictors is to determine whether the associated β is varying between cluster units or not. If the associated variance (τ_{qq}) is significant, then the coefficient needs to be modeled as random (e.g., equations 17, 18, 19, 20, 21). If τ_{qq} is not significant, the regression coefficient should be modeled as fixed (e.g., $\beta = \gamma$).

Similar to an OLS, the next step is to evaluate the significance of the level-1 predictors. The null hypothesis is that the γ_{qs} is equal to zero (H_o: $\gamma_{qs} = 0$), while the alternative hypothesis is that the γ_{qs} is not equal to zero (H_a: $\gamma_{qs} \neq 0$). If these parameter estimates ($\gamma_{0cat1}, ..., \gamma_{0catn}, \gamma_{0cont1}, ..., \gamma_{0contm}$) are significant, the associated predictors are likely to be included in the final model

Mixed Procedure for Unconditional Model

Table 5 lists the fixed and random components of a random-coefficient model. Identifying these components will be helpful when utilizing the mixed linear procedures for SAS, SPSS, and STATA (Figure 11).

Model	Type of	Interpretation
Components	Variable	
γ00	Fixed	Mean of the cluster units' mean for the reference group(s) of the categorical predictor(s) and/or when the continuous predictors
		are equal to zero
$\gamma_{catl0} * X_{catl}$	Fixed	Contribution of a categorical level-1 predictor to the dependent measure. A significant γ_{catl0} implies that the variable should be included in the final model.
$\gamma_{contk0} * x_{contk}$	Fixed	Contribution of a continuous level-1 predictor to the dependent measure. A significant γ_{contk0} implies that the variable should be included in the final model.
μ _{catlj} * x _{catl}	Random	μ_{catlj} is the unique increment of the slope for variable x_{catl} associated with the jth cluster. The variance and its significance of this statistic is important (τ_{qq}). A significant variance implies that the slope for this variable differs significantly between organizations.

Table 5: Random and Fixed Components of a Random-coefficient Model

Model	Type of	Interpretation
Components	Variable	
μ _{contkj} * X _{contk}	Random	μ_{catlj} is the unique increment of the slope for variable x_{contk} associated with the jth cluster. The variance and its significance of this statistic is important (τ_{qq}). A significant variance implies that the slope for this variable differs significantly between organizations.
μ _{0j}	Random	μ_{0j} is the difference between the cluster unit mean (average of the subject scores within the cluster) and the mean of the cluster units' means after accounting for the level-1 predictors. The variance and its significance of this statistic is more important (τ_{00}).). A significant variance implies that the intercepts for this model differs significantly between organizations.
r _{ij}	Random	Residual of the subject's score after accounting for the cluster's effect (μ_{0j}) and the level-1 predictors. The variance and its significance of this statistic is more important (σ^2) .

Table 3: Random and Fixed Components of a Model with Level-2 Predictors (con't)

Figure 11: Software Code for the Random-coefficient Model

SAS	proc mixed data=DATA noclprint covtest ;							
	class Cluster Unit x _{cat1} x _{catn} ;							
	model $Y_{ii} = x_{cat1} \dots x_{catn} \frac{x_{cont1} \dots x_{contm}}{x_{cont1} \dots x_{contm}}$ /solution ddfm=bw;							
	random intercept x _{cat1} x _{catn} x _{cont1} x _{contm} /sub= Cluster Unit;							
	run;							
SPSS	MIXED							
	<mark>Y</mark> ij BY <mark>x_{cat1} x_{catn} WITH <mark>x_{cont1} x_{contm}</mark></mark>							
	/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)							
	SINGULAR(0.00000000001) HCONVERGE(0, ABSOLUTE)							
	LCONVERGE(0, ABSOLUTE)							
	PCONVERGE(0.000001, ABSOLUTE)							
	$FIXED = \frac{\mathbf{x}_{cat1} \dots \mathbf{x}_{catn}}{\mathbf{x}_{cont1} \dots \mathbf{x}_{contm}} SSTYPE(3)$							
	/METHOD = REML							
	/PRINT = SOLUTION TESTCOV							
	/RANDOM INTERCEPT x _{cat1} x _{catn} x _{cont1} x _{contm} SUBJECT(Cluster							
	Unit) COVTYPE(UN).							
STATA	xtmixed Y _{ij} x _{cat1} x _{catn} x _{cont1} x _{contm} Cluster Unit: x _{cat1} x _{catn} x _{cont1}							
	x _{contm} , covariance(unstructured) reml variance							

Engineering Instructor Interaction Example

For the engineering education example, we will examine whether students perception of instructor clarity (clarity variable) influences their instructor interactions. For the random-coefficient model, we will also examine whether students perception of clarity differs between institutions; which would justify modeling clarity as a random coefficient model (i.e., does the $\beta_{clarityi}$ vary significantly between institutions). The level-1 model for our example is:

InstructorInteraction_{ij} =
$$\beta_{0j} + \beta_{clarityj} * clarity + r_{ij}$$
 (25)

The dependent value (InstructorInteraction_{ij}) is the measure for the ith subject within the jth organization (e.g., j= Cal State Polytechnics, Cal State Sacramento, Case Western, ..., Texas A & M, and MIT). r_{ij} is the residual of the ith subject within the jth institution and is normally distributed with zero mean and a variance of σ^2 (N(0, σ^2)) after accounting for the level-1 predictor variable (e.g., $\beta_{clarityj}$ in our example). Since, we hypothesis that clarity may differ between institutions, the level-2 models are:

$$\beta_{0j} = \gamma_{00} + \mu_{0j}$$

$$\beta_{clarityj} = \gamma_{clarityj} + \mu_{clarityj}$$
(26)
(27)

where γ_{00} is the mean of the intercepts and μ_{0j} are the random deviations that are normally distributed with a variance of τ_{00} (N(0, τ_{00})). μ_{0j} may be considered the deviations away from the mean intercepts, where τ_{00} is the variability of these means between institutions. The average slope for clarity is $\gamma_{clarity}$ and $\mu_{clarityj}$ are the unique contribution of the jth institution to the clarity slope. These contributions (or deviations) are normally distributed with a variance of τ_{11} (N(0, τ_{11})). If τ_{11} is significant (i.e., the value is non-zero), this implies that the students' perception of clarity varies from institution to institution.

Substituting equations 26 and 27 into equation 25, the combined model becomes:

InstructorInteraction_{ij} =
$$\gamma_{00} + \mu_{0j} + (\gamma_{clarityj} + \mu_{clarityj})^* \text{ clarity} + r_{ij}$$
 (28)
InstructorInteraction_{ij} = $\gamma_{00} + \gamma_{clarityj}^* \text{ clarity} + \mu_{clarityj}^* \text{ clarity} + r_{ij}$ (29)

From equation 28, we can see that clarity needs to be specified as a fixed ($\gamma_{clarityj}$) and a random ($\mu_{clarityj}$) effect in the mixed procedure in SAS, SPSS, and STATA (Figure 12).

CAC	near mixed data A DET near int contest :
SAS	proc mixed data-ABET nociprint coviest,
	class Institution;
	<pre>model InstructorInteraction = clarity /solution ddfm=bw;</pre>
	random intercept clarity/sub=Institution;
	run;
SPSS	MIXED
	INSTRUCTORINTERACTION WITH CLARITY
	/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)
	SINGULAR(0.00000000001) HCONVERGE(0, ABSOLUTE)
	LCONVERGE(0, ABSOLUTE)
	PCONVERGE(0.000001, ABSOLUTE)
	/FIXED = CLARITY SSTYPE(3)
	/METHOD = REML
	/PRINT = SOLUTION TESTCOV
	/RANDOM INTERCEPT CLARITY SUBJECT(Institution)
	COVTYPE(UN).
STATA	xtmixed interaction clarity institution: clarity, covariance(unstructured) reml
	variance

Figure 12: Code for the Engineering Education Example (Random Coefficient Model)

Engineering Instructor Interaction Results

The τ_{qq} 's and σ^2 estimates are found under the section "Covariance Parameter Estimates" for SAS, "Estimates of Covariance Parameters" for SPSS, and "Random-effects Parameters" for STATA (Figure 13). The parameter estimates from all statistical software programs are the same with τ_{00} equal to .009537 with a p-value of .2962 (see yellow highlight in Figure 13), τ_{11} equal to .006863 with a p-value of .0400 (see green highlight in Figure 13), and σ^2 is .3356 with a p-value less than .0001 (see grey highlight in Figure 13). τ_{11} and σ^2 are both significant at an alpha of .01. A significant σ^2 implies that other level-1predicator variables exist that may decrease the residual variance. While a significant τ_{11} suggests the slope for clarity is different between institutions (e.g., MIT students perception of clarity may differ from students at Georgia Tech).

The proportion of the variance explained by students' perception of clarity is 20 percent ((.4194-.3356)/.4194), where .4194 is the σ^2 of the unconditional model calculated in the previous section). This implies that 20 percent of the **within-institution variance** in the model can be explained by student's perception of instructor clarity. Since σ^2 is significant, 80 percent (100-20) of the unexplained within-student variance may be described by other level-1 predictors.

SAS Output							
Covariance Parameter Estimates							
		Standard	Z				
Cov Parm	Subject	Estimate	Error	Value	Pr Z		
UN(1,1)	Institution	0.009537	0.01781	0.54	<mark>0.2962</mark>		
UN(2,1)	Institution	-0.00339	0.007630	-0.44	0.6564		
UN(2,2)	Institution	0.006863	0.003920	1.75	0.0400		
Residual	(0.3356 0.0	07157 46	.89 <.0	001		
SPSS Output							
Covariance Param	eters						
		Estin	nates of Cov	variance P	arameters((a)	
						95% Confide	ence Interval
			Std.			Lower	Upper
Parameter		Estimate	Error	Wald Z	Sig.	Bound	Bound
Residual		.335602	.007157	46.891	.000	.321863	.349927
Intercept +	UN (1,1)	.009539	.017811	.536	.592	.000246	.370586
CLARITY	UN (2,1)	003395	.007630	445	.656	018349	.011559
[subject =	UN (2,2)	.006863	.003920	1.751	.080	.002240	.021022
a Dependent Varial	ale INTER	CTION In	teraction Sc	ale: Stu al	6k l m n o		
STATA Output	JIC. INTERA			aic. Stu yi	0K,1,111,11,0.		
Random-effects Pa	arameters	Estimate S	Std. Err. [9	95% Conf.	Intervall		
	+		[]		
institution: Unstruct	tured						
var(clarity	/)	.0068621	.0039201	.0022397	.0210244	4	
var(con	is)	.0094539	.0177891	.0002366	5 <u>.377817</u>	1	
cov(clarity,_cons)0033789 .0076280183295 .0115717							
var(Residu	+	525 00715	87 3710	110 340	0707		
			.5219				

Figure 13: Estimates of Covariance Parameters for the Random-coefficient Model

The fixed effects for the random-coefficient model can be found under the "Solution for Fixed Effects" in SAS output, "Estimates of Fixed Effects" in SPSS output, and "Interaction" in STATA output (Figure 14). For this example, the interpretation of the intercept (γ_{00}) is the average instructor interaction is .6080, when the clarity score is zero. The instructor interaction increases .5407 for every one point increases in student's perception of clarity. The fixed effect for clarity ($\gamma_{clarityj}$) is significant (p-values less than .0001) at an alpha of .05, which implies that this variable should be kept for the complete model (following section).

Figure 14: Parameter Estimates for Model with the Random-coefficient Model

SAS Output										
Solution for Fixed Effects Standard Effect Estimate Error DF t Value $Pr > t $ Intercept 0.6080 0.05200 38 11.69 <.0001 CLARITY 0.5407 0.02052 4421 26.36 <.0001 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value $Pr > F$ CLARITY 1 - 4421 (04.67 < 0001										
SPSS Outpu			4421	094	.07	<.00	001			
Fixed Effect	il S									
I Med Effect	Type III	Tests of Fi	ixed Ef	fects(a	a)					
	Numerato	or Denom	inator							
Source	df	df	2	F	7	S	big.			
Intercept		1 3	2.079	136.	.681		.000			
CLARITY		1 2	9.753	694.	.670		.000			
a Dependent	t Variable: 1	INSTRUCT	'ORIN'	TERA	CTIO	ΝI	Interact	tion	Scale: Stu q16	k,l,m,n,o.
		ŀ	Estimat	tes of I	Fixed	Eff	ects(a))		
								l	95% Confide	nce Interval
_		Std.					~ .		Lower	Upper
Parameter	Estimate	Error	df		t		Sig		Bound	Bound
Intercept	.607987	.052004	32.0	079	11.6	91).	000	.502068	.713907
CLARITY	.540712	.020515	29.	753	26.3	57	.(000	.498800	.582624
a Dependent	t Variable:	INSTRUCT	ORIN	TERA	CTIO	NI	nteract	tion	Scale: Stu q16	k,l,m,n,o.
STATA Out	tput									
interaction	interaction Coef. Std. Err. z $P > z $ [95% Conf. Interval]									
clarity _cons	.5404191 . .6088723	0205099 .0519638	26.35 11.72	0.000) .50 0 .5)022 070	205 .: 252 .	5806 .710′	178 7194	

The SAS and SPSS information criteria¹² output are all equal for the -2 restricted log likelihood, Akaike's information criterion (AIC), and Hurvich and Tasi's Criterion (AICC) (Figure 15). The Schwarz's Bayesian Criterion (BIC) is slightly different and may be to differences in the software's algorithms. The fit statistics will be useful when comparing models involving instructor interaction (Table 6). The -2 restricted log likelihood, AIC, AICC, and BIC are smallest for the random-coefficient model, which implies this model is better than the previously examined models.

1

SAS Output				
Fit Statistics				
	-2 Res Log Likelihood	7910.7		
	AIC (smaller is better)	7918.7		
	AICC (smaller is better)) 7918.7		
	BIC (smaller is better)	7925.4		
SPSS Output				
	Information Crite	eria(a)		
	-2 Restricted Log Likelihood	7910.716		
	Akaike's Information Criterion (AIC)	7918.716		
	Hurvich and Tsai's Criterion (AICC)	7918.725		
	Bozdogan's Criterion (CAIC)	7948.327		
	Schwarz's Bayesian Criterion (BIC)	7944.327		
The information criteria are displayed i	n smaller-is-better forms.			
a Dependent Variable: INSTRUCTOR	INTERACTION Interac	tion Scale: St		

Figure 15: Information Criteria for the Random-coefficient Model

Table C.	Commoning	The condition of	Madalan	J Madal	a and a Tanal	1 Due diates
I ADIE D:	Comparing	Unconditional	viodei an	ia vioaei wiir	n oniv Levei-	2 Prediciors
Lable of	Comparing	Cheomannona	THOUSE an	ia mioaci mici		

Information Criteria	Unconditional Model	Model with only	Model with only	
		level-2 Predictors	level-1 Predictors	
-2 Res Log Likelihood	8906.914	8877.489	7910.716	
AIC	8910.914	8881.489	7918.716	
AICC	8910.917	8881.492	7918.725	
CAIC	8925.720	8896.294	7948.327	
BIC	8923.720	8894.294	7944.327	

¹² For Stata, use the command "estat ic" after running the xtmixed command.

An Intercepts- and Slopes-as-Outcomes Model (Complete Model)

Now that we have identify the level-1 and level-2 predictors, the intercepts- and slopes-asoutcomes model combines the findings from the model with level-2 predictors and the randomcoefficients model to build a complete explanatory model, which accounts for the variability within and between cluster units. The level-1 model for the intercepts- and slopes-as outcomes model (Equation 29) is the same as the random-coefficient model (Equation 15)

$$Y_{ij} = \beta_{0j} + \beta_{cat1j} * x_{cat1} + \dots + \beta_{catnj} * x_{catn} + \beta_{cont1j} * x_{cont1} + \dots + \beta_{contmj} * x_{contm} + r_{ij}$$
(30)

The dependent value (Y_{ij}) is the measure for the ith subject within the jth cluster unit. r_{ij} is the residual of the ith subject within the jth cluster unit and is normally distributed with zero mean and a variance of $\sigma^2 (N(0, \sigma^2))$ after accounting for the level-1 predictors. The β 's in the level-1 model are similar to the random-coefficient model, except all slopes and the intercept will include the significant level-2 predictors found in the model with level-2 predictors (Equations 30-34).

Level-2 Model:	
$\beta_{0j} = \gamma_{00} + \gamma_{0cat1} * w_{cat1} + \dots + \gamma_{0catn} * w_{catn} +$	
$\gamma_{0 \text{cont1}} * W_{\text{cont1}} + \dots + \gamma_{0 \text{contm}} * W_{\text{contm}} + \mu_{0 \text{j}}$	(31)
$\beta_{cat1j} = \gamma_{cat10} + \gamma_{cat1cat1} * w_{cat1} + \ldots + \gamma_{cat1n} * w_{catn} + \cdots$	
$\gamma_{cat1cont1} * w_{cont1} + \dots + \gamma_{cat1contm} * w_{contm} + \mu_{cat1j}$	(32)
$\beta_{\text{catnj}} = \gamma_{\text{catn0}} + \gamma_{\text{catncat1}} * w_{\text{cat1}} + \dots + \gamma_{\text{catncatn}} * w_{\text{catn}} +$	
$\gamma_{catn1cont1} * w_{cont1} + \dots + \gamma_{catncontm} * w_{contm} + \mu_{catnj}$	(33)
$\beta_{\text{cont1j}} = \gamma_{\text{cont10}} + \gamma_{\text{cont1cat1}} * W_{\text{cat1}} + \dots + \gamma_{\text{cont1catn}} * W_{\text{catn}} +$	
$\gamma_{\text{cont1cont1}} * w_{\text{cont1}} + \dots + \gamma_{\text{cont1contm}} * w_{\text{contm}} + \mu_{\text{cont1j}}$	(34)
$\beta_{\text{contmj}} = \gamma_{\text{contm0}} + \gamma_{\text{contmcat1}} * W_{\text{cat1}} + \dots + \gamma_{\text{contmcatn}} * W_{\text{catn}} +$	
$\gamma_{\text{contmcontl}} * W_{\text{contl}} + \dots + \gamma_{\text{contmcontm}} * W_{\text{contm}} + \mu_{\text{contmj}}$	(35)

where the γ 's (γ_{00} , γ_{cat10} , ..., γ_{catn0} , γ_{cont10} ,..., γ_{cont10}) is the average intercept/or slope across the cluster units and μ_{qj} 's (i.e., μ_{0j} , μ_{cat1j} , ..., μ_{catnj} , μ_{cont1j} , ..., μ_{contmj}) are the random deviations that are normally distributed with a variance of τ_{qq} (N(0, τ_{qq})) after accounting for the level-2 predictors. Substituting Equations 31, 32, 33, 34, 35, into equations leads to the combined model (Equation 36).

Combined Model:

$$\begin{split} Y_{ij} &= \gamma_{00} + \gamma_{0cat1} * w_{cat1} + \ldots + \gamma_{0catn} * w_{catn} + \gamma_{0cont1} * w_{cont1} + \ldots + \gamma_{0contm} * w_{contm} + \mu_{0j} \\ &+ (\gamma_{cat10} + \gamma_{cat1cat1} * w_{cat1} + \ldots + \gamma_{cat1n} * w_{catn} + \gamma_{cat1cont1} * w_{cont1} + \ldots + \gamma_{cat1contm} * w_{contm} + \mu_{cat1j}) * x_{cat1} \\ &+ \ldots \end{split}$$

+ $(\gamma_{catl0} + \gamma_{catlcat1} * W_{cat1} + ... + \gamma_{catlcatn} * W_{catn} + \gamma_{catlcont1} * W_{cont1} + ... + \gamma_{catlcontm} * W_{contm} + \mu_{catlj}) * X_{catn}$ + $(\gamma_{cont10} + \gamma_{cont1cat1} * W_{cat1} + ... + \gamma_{cont1n} * W_{catn} + \gamma_{cont1cont1} * W_{cont1} + ... + \gamma_{cont1contm} * W_{contm} + \mu_{cont1j}) * X_{cont1}$ + ...

 $+(\gamma_{contk0} + \gamma_{contkcat1} * W_{cat1} + ... + \gamma_{contkn} * W_{catn} + \gamma_{contkcont1} * W_{cont1} + ... + \gamma_{contkcontm} * W_{contm} + \mu_{contkj}) * x_{contk} + r_{ij}$ (36)

Model Evaluation

As seen in the model with only level-2 predictors and the random-coefficients model, the "proportion reduction in variance" or "variance explained" evaluates how much variance the predictors account for in the level-1 and level-2 models. The number of proportion reduction in variance equations (Equations 37, 38, and 39) equals the number of random variables in the model (e.g., μ_{0j} , μ_{cat1j} , ..., μ_{catnj} , μ_{cont1j} , ..., μ_{contmj} and r_{ij}).

Within Cluster Unit Variance Explained =
$$\frac{\sigma^2(Unconditional\ Model) - \sigma^2(Complete\ Model)}{\sigma^2(Unconditional\ Model)}$$
(37)

Between Cluster Unit Variance Explained =
$$\frac{\tau_{00} (Unconditional Model) - \tau_{00} (Complete Model)}{\tau_{00} (Unconditional Model)}$$
(38)

Varying Slope Variance Explained =
$$\frac{\tau_{qq} (Random-coefficients Model) - \tau_{qq} (Complete Model)}{\tau_{qq} (Random-coefficients Model)}$$
(39)

The possible values for this measure are between one and zero, where a value of one (1) suggests that the predictor(s) explain all the variance attributed to the subject for the level-1 model and to the cluster unit for the level-2 models (i.e., the β 's). A value of zero implies that the predictor(s) explain none of the variance attributed to the subject for the level-1 model and to the cluster unit for the level-2 models (i.e., the β 's).

As seen in the random-coefficients model, level-1 predictors are evaluated to determine whether the associated β is varying between cluster units or not. If the associated variance (τ_{qq}) is significant, then the coefficient needs to be modeled as random (e.g., equations 31, 32, 33, 34 35). If τ_{qq} is not significant, the regression coefficient should be modeled as fixed (e.g., $\beta = \gamma$).

The next step is to evaluate the significance of the predictors. The null hypothesis is that the γ_{qs} is equal to zero (H_o: $\gamma_{qs} = 0$), while the alternative hypothesis is that the γ_{qs} is not equal to zero (H_a: $\gamma_{qs} \neq 0$). If these parameter estimates ($\gamma_{0cat1}, ..., \gamma_{0catn}, \gamma_{0cont1}, ..., \gamma_{0contm}$) are significant, these predictors needs to be included in the final model; all insignificant predictors should be removed from the final model.

Mixed Procedure for Unconditional Model

Table 7 lists the fixed and random components of a random-coefficient model. Identifying these components will be helpful when utilizing the mixed linear procedures for SAS, SPSS, and STATA (Figure 19).

Type of	Interpretation
Variable	
Fixed	γ_{00} is the mean of the cluster units' mean for the reference
	group(s) of the categorical predictor(s) and/or when the
	continuous predictors are equal to zero.
Fixed	$\gamma_{0\text{cati}}$ is the contribution of a categorical level-2 predictor to
	the dependent measure. A significant γ_{0cati} implies that the
	variable should be included in the final model.
Fixed	γ_{0contj} is the contribution of a continuous level-2 predictor
	to the dependent measure. A significant γ_{0contj} implies that
	the variable should be included in the final model.
Fixed	γ_{catk0} is the contribution of a categorical level-1 predictor
	to the dependent measure. A significant γ_{catk0} implies that
	the variable should be included in the final model.
Fixed	γ_{contl01s} the contribution of a categorical level-1 predictor
	to the dependent measure. A significant γ_{contil0} implies that
D . 1	the variable should be included in the final model.
Fixed	γ_{caticatk} is the interaction effect between a categorical level-
	1 and a categorical level-2 predictor on the dependent
	measure. A significant γ_{caticatk} implies that the variable
	should be included in the final model.
Fixed	$\gamma_{\text{catkcontj}}$ is the interaction effect between a categorical
	level-1 and a continuous level-2 predictor on the
	dependent measure. A significant $\gamma_{\text{catkcontj}}$ implies that the
Fixed	variable should be included in the final model.
Fixed	$\gamma_{\text{contleati}}$ is the interaction effect between a continuous
	dependent measure. A significant y implies that the
	variable should be included in the final model
Fixed	$\gamma_{\rm eff}$ is the interaction effect between a categorical
TIXeu	level-1 and a categorical level-2 predictor on the
	dependent measure A significant y implies that the
	variable should be included in the final model
Random	μ_{outility} is the unique increment of the slope for variable $\mathbf{x}_{\text{outility}}$
	associated with the ith cluster. The variance and its
	significance of this statistic is important (τ_{aa}) A
	significant variance implies that the slope for this variable
	differs significantly between organizations.
	Type of Type of Variable Fixed Faxed Faxed Faxed

Table 7: Random and Fixed Components of a Complete Model

Table 5: Random and Fixed Components of a Random-coefficient Model (con't)
Table 5. Kanuolii anu Fixeu Components of a Kanuolii-coefficient Mouel	(0 n t)

Model Components	Type of	Interpretation
	variable	
$\mu_{contjj} * x_{contj}$	Random	μ_{contjj} is the unique increment of the slope for variable x_{contj}
		associated with the jth cluster. The variance and its
		significance of this statistic is important (τ_{qq}). A
		significant variance implies that the slope for this variable
		differs significantly between organizations.
μ_{0j}	Random	μ_{0j} is the difference between the cluster unit mean
		(average of the subject scores within the cluster) and the
		mean of the cluster units' means after accounting for all
		the predictors in the model. A significant variance (τ_{00})
		implies that the intercepts differ between organizations.
r _{ij}	Random	r_{ij} is residual of the subject's score after accounting for the
v		cluster's effect (μ_{0j}) and the all the predictors in the model.

Figure 16: Software Code for the Complete Model

SAS	proc mixed data=DATA noclprint covtest ;
	class Cluster Unit x _{cat1} x _{cat1} w _{cat1} w _{catn} ;
	model Y _{ij} = x _{cat1} x _{catn} w _{cat1} w _{catn} x _{cont1} x _{contk} w _{cont1} w _{2contm} (all
	possible interactions between first and second level variables) /solution ddfm=bw;
	random intercept x _{cat1} x _{cat1} x _{cont1} x _{contk} /sub=Cluster Unit;
	run;
SPSS	MIXED
	<mark>Y</mark> ij BY x _{cat1} x _{catn} w _{cat1} w _{catn} WITH x _{cont1} x _{contk} w _{cont1} w _{2contm}
	/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)
	SINGULAR(0.00000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0,
	ABSOLUTE)
	PCONVERGE(0.000001, ABSOLUTE)
	/FIXED = x _{cat1} x _{cat1} w _{cat1} w _{catn} x _{cont1} x _{contm} w _{cont1} w _{2contm} (all possible
	interactions between first and second level variables) SSTYPE(3)
	/METHOD = REML
	/PRINT = SOLUTION TESTCOV
	/RANDOM INTERCEPT x _{cat1} x _{cat1} x _{cont1} x _{contk} SUBJECT (Cluster Unit)
	COVTYPE(UN).
STATA	xtmixed interaction x _{cat1} x _{cat1} W _{cat1} W _{catn} x _{cont1} x _{contk} W _{cont1} W _{2contm} (all
	possible interactions between first and second level variables) Cluster Unit: x _{cat1}
	x _{catl} x _{cont1} x _{contk} covariance(unstructured) reml variance

Engineering Instructor Interaction Example

The complete HLM model for our engineering education example will examine institutional and student characteristics that influence student's interaction with his/her professor. The institutional predictor variable included in this model is the organization's Carnegie Classification (variable examined in the model with only level-2 predictors) and the student characteristics include high school grade point average (q10bround), student's perception of

instructor clarity (clarity), the amount of perceived collaboration in the program (collab), and the student's perception of program openness (prog_open). Appendix 1 and Appendix 2 provides the descriptive statistics of these variables.

In our investigation of random-coefficients model, the perception of clarity differ significantly between institutions; thus for the complete model it will be modeled as a random slope. When analyzing program openness (analysis not shown here), this predictor differ significantly between institutions with a significant slope effect. A student's high school grade point average, and perceived collaboration in the program did not differ significantly between institutions, but the slope effects are significant (analysis not shown here); thus these level-1 predictors are modeled as fixed effects.

The level-1 model for our engineering example is

InstructorInteraction_{ij} =
$$\beta_{0j} + \beta_{clarityj}$$
 * clarity + β_{prog_openj} * prog_open
+ $\beta_{q10bround}$ * q10bround + β_{collab} * collab
+ r_{ij} (40)

The dependent value (InstructorInteraction_{ij}) is the measure for the ith subject within the jth organization (e.g., j= Cal State Polytechnics, Cal State Sacramento, Case Western, ..., Texas A & M, and MIT). r_{ij} is the residual of the ith subject within the jth institution and is normally distributed with zero mean and a variance of σ^2 (N(0, σ^2)) after accounting for the level-1 predictor variable (e.g., $\beta_{clarityj}$ in our example). Since, we hypothesis that the intercept, clarity, and program openness may differ between institutions, the level-2 models are:

$p_0 = 100^{\circ} + 100^{\circ}$	β_{0i}	$=\gamma_{00}+\gamma_{0carn cat}*$	$carn cat + \mu_{0i}$				(41	l)
-----------------------------------	--------------	------------------------------------	-----------------------	--	--	--	-----	----

 $\beta_{\text{clarityj}} = \gamma_{\text{clarity0}} + \gamma_{\text{claritycarn_cat}} * \text{carn_cat} + \mu_{\text{clarityj}}$ (42)

 $\beta_{\text{prog_openj}} = \gamma_{\text{prog_open0}} + \gamma_{\text{prog_opencarn_cat}} * \operatorname{carn_cat} + \mu_{\text{prog_openj}}$ (43)

 γ_{00} is the mean of the intercepts and μ_{qj} 's are the random deviations that are normally distributed with a variance of τ_{00} (N(0, τ_{00})) after accounting for Carnegie Classification. μ_{0j} may be considered the deviations away from the mean intercepts, where τ_{00} is the variability of these means between institutions. The average slope for clarity is $\gamma_{clarity}$ and $\mu_{clarityj}$ are the unique contribution of the jth institution to the clarity slope after accounting for the institution's Carnegie classification. These contributions (or deviations) are normally distributed with a variance of τ_{11} (N(0, τ_{11})). If τ_{11} is significant (i.e., the value is non-zero), this implies that the students' perception of clarity varies from institution to institution. The average slope for program openness is γ_{prog_open0} and μ_{prog_openj} are the unique contribution of the jth institution to the program openness slope after accounting for the institution. These contributions (or deviations) are normally distributed with a variance of τ_{22} (N(0, τ_{22})). If τ_{22} is significant (i.e., the value is non-zero), this implies that the students' perception of program openness varies from institution. After substituting equations 41, 42, and 43 into equation 40, the complete model becomes

InstructorInteraction_{ij} =
$$\gamma_{00} + \gamma_{0carn_cat} * carn_cat + \mu_{0j} + (\gamma_{clarity0} + \gamma_{claritycarn_cat} * carn_cat + \mu_{clarityj}) * clarity + (\gamma_{prog_open0} + \gamma_{prog_opencarn_cat} * carn_cat + \mu_{prog_openj}) * prog_open + \beta_{q10bround} * q10bround + \beta_{collab} * collab + r_{ij}$$
 (44)
InstructorInteraction_{ij} = $\gamma_{00} + \gamma_{0carn_cat} * carn_cat + \mu_{0j} + \gamma_{clarity0} * clarity + \gamma_{claritycarn_cat} * carn_cat * clarity + \mu_{clarityj} * clarity + \gamma_{prog_open0} * prog_open + \gamma_{prog_open0} + \gamma_{prog_open0} * prog_open + \gamma_{prog_opencarn_cat} * carn_cat * prog_open + \mu_{prog_openj} * prog_open + \beta_{q10bround} * q10bround + \beta_{collab} * collab + r_{ij}$ (45)

The random components of the complete model are the intercept (μ_{0j}) , clarity $(\mu_{clarityj} * clarity)$, program openness $(\mu_{prog_openj} * prog_open)$, and the residuals (r_{ij}) . The fixed components are Carnegie Classification $(\gamma_{0carn_cat} * carn_cat)$, clarity $(\gamma_{clarity0} * clarity)$, interaction between clarity and Carnegie Classification $(\gamma_{claritycarn_cat} * carn_cat * clarity)$, program openness $(\gamma_{prog_open0} * prog_open)$, interaction between program openness and Carnegie Classification $(\gamma_{prog_opencarn_cat} * carn_cat * prog_open)$, high school grade point average $(\beta_{q10bround} * q10bround)$, and coloration $(\beta_{collab} * collab)$. Figure 17 is the SAS code for the Equation 45 model.

Figure 17: SAS Code for Complete Model Include Interaction Terms

```
proc mixed data=ABET noclprint covtest noitprint;
    class Institution carn_cat;
    model InstructorInteraction = q10bround clarity collab prog_open
carn_cat carn_cat*clarity carn_cat*prog_open /solution ddfm=bw;
    random intercept clarity prog_open /sub=Institution type=simple;
run;
```

Figure 18: Solution for Fixed Effects of Complete Model

	Solutio	on for Fixed	ETTECTS			
			Standard			
Effect	carn_cat	Estimate	Error	DF	t Value	Pr > t
Intercept		-0.03434	0.2400	35	-0.14	0.8871
q10bround		0.02403	0.007187	4412	3.34	0.0008
CLARITY		0.4052	0.07011	4412	5.78	<.0001
COLLAB		0.2785	0.01232	4412	22.61	<.0001
PROG_OPEN		0.2122	0.04390	4412	4.83	<.0001
carn_cat	1	-0.3738	0.2431	35	-1.54	0.1331
carn_cat	2	-0.3090	0.3035	35	-1.02	0.3157
carn_cat	3	-0.2036	0.2904	35	-0.70	0.4878
carn_cat	4	0				
CLARITY*carn_cat	1	-0.04829	0.07196	4412	-0.67	0.5022
CLARITY*carn_cat	2	-0.05499	0.09208	4412	-0.60	0.5504
CLARITY*carn_cat	3	0.000864	0.08804	4412	0.01	0.9922
CLARITY*carn_cat	4	0				
PROG_OPEN*carn_cat	1	0.02418	0.04528	4412	0.53	0.5935
PROG_OPEN*carn_cat	2	0.09291	0.05868	4412	1.58	0.1134
PROG_OPEN*carn_cat	3	-0.02885	0.05626	4412	-0.51	0.6081
PROG OPEN*carn cat	4	0				

When examining the fixed effects for the model, the interaction terms between the level-1 and level-2 variables are not significant (p-values for the clarity * carn_cat and prog_open* carn_cat are all greater than .05). This implies that even though clarity and program openness may vary between institutions, the institution's Carnegie Classification does influence student's perception of clarity and program openness significantly on instructor interaction (the dependent measure). Removing the interaction terms creates a more parsimonious model (Equation 46). Figure 19 is the SAS, SPSS, and STATA code for our complete model with Equations 47, 48, and 49 represent the new level-2 models.

InstructorInteraction _{ij} = $\gamma_{00} + \gamma_{0carn_cat} * carn_cat + \mu_{0j} + \gamma_{clarity0} * clarity$	
+ $\mu_{clarityj}$ * clarity + γ_{prog_open0} *prog_open	
+ $\mu_{\text{prog_openj}}$ * prog_open + $\beta_{q10bround}$ * q10bround +	
$\beta_{collab} * collab + r_{ij}$	(46)
$\beta_{0j} = \gamma_{00} + \gamma_{0carn_cat} * carn_cat + \mu_{0j}$	(47)
$\beta_{\text{clarityj}} = \gamma_{\text{clarity0}} + \mu_{\text{clarityj}}$	(48)
$\beta_{\text{prog_openj}} = \gamma_{\text{prog_open0}} + \mu_{\text{prog_openj}}$	(49)

Figure 19: Code for the Engineering Education Example (Complete Model)

SAS	proc mixed data=ABET noclprint covtest noitprint;							
	class Institution carn_cat;							
	model InstructorInteraction = q10bround clarity collab prog_open carn_cat							
	olution ddfm=bw;							
	random intercept clarity prog_open /sub=Institution type=un;							
	run;							
SPSS	MIXED							
	INSTRUCTORINTERACTION BY carn_cat WITH CLARITY PROG_OPEN							
	q10bround COLLAB							
	/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)							
	SINGULAR(0.00000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0,							
	ABSOLUTE)							
	PCONVERGE(0.000001, ABSOLUTE)							
	/FIXED = q10bround CLARITY COLLAB PROG_OPEN carn_cat							
	SSTYPE(3)							
	/METHOD = REML							
	/PRINT = SOLUTION TESTCOV							
	/RANDOM INTERCEPT CLARITY PROG OPEN SUBJECT(Institution)							
	COVTYPE(UN).							
STATA	xtmixed interaction q10bround clarity collab prog_open carn_cat_1 carn_cat_2							
	carn_cat_3 institution: clarity prog_open, covariance(unstructured) reml variance							

Engineering Instructor Interaction Results

The τ_{qq} 's and σ^2 estimates are found under the section "Covariance Parameter Estimates" for SAS¹³, "Estimates of Covariance Parameters" for SPSS¹⁴, and "Random-effects Parameters" for STATA (Figure 20). The parameter estimates from all statistical software programs are similar with τ_{11} (intercept variance) equal to .00231 with a p-value of .0912 (see yellow highlight in Figure 20), τ_{22} (clarity slope variance) equal to .005045 with a p-value of .0440 (green highlight in Figure 20), τ_{33} (program openness slope) equal to .0747 with a p-value of .0747 (blue highlight in Figure 20) and σ^2 is .2435 with a p-value less than .0001¹⁵. All variances except for program openness are significant at an alpha of .05¹⁶. A significant σ^2 implies that other level-1 predicator variables exist that may decrease the residual variance. While a significant τ_{22} suggests the slope for clarity may be explained by other level-2 predictor variables.

Some researchers may decide that the slope for program openness does not vary between institutions since its variance is not significant at an alpha of .05; thus, they may decide to model this variable as fixed effect (the following section shows that the fixed effect is significant). I decided to keep this variable as a random effect because it is significant at an alpha of .1; however, decisions such as these should be guided by theory instead of arbitrary statistical rules.

The proportion of the variance explained by student's characteristics (clarity, program openness, high school grade point average, and collaboration) is 41.94 ((.4194-.2435)/.4194), where .4194 is the σ^2 of the unconditional model). This implies that 41.94 percent of the **within-institution variance** in the model is explained by student's perception of instructor clarity, program openness, high school grade point average, and collaboration. Since σ^2 is significant, 58.06 percent (100-41.94) of the unexplained within-student variance may be described by other level-1 predictors.

The proportion of the variance explained by the institution's Carnegie classification is 78 percent ((.099571-.022341)/.099571), where .099571 is the τ_{00} of the unconditional model calculated in the previous section). This implies that 78 percent of the **between-institution variance** is explained by the institution's Carnegie classification.

With no predictor variables for the slope coefficients (Equations 48 and 49), the proportion of the variance is not calculated for clarity and program openness slope.

¹³ If "Covariance Parameter Estimates" is not found in the output, check to see if "covtest" is included in the proc mixed statement.

¹⁴ If "Estimates of Covariance Parameters" is not found in the output, check to see if "testcov" is included in the print line in the mixed procedure syntax.

¹⁵ SPSS provides the p-value for a 1-tail test; divide this value by 2 to get the same value as the SAS output

¹⁶ STATA and SPSS provide 95% confidence intervals. If the confidence interval does not include zero (0), then the variance is significant at an alpha of .05 (1-.95).

Figure 20: Estimates of Covariance Parameters for Complete Model

SAS Output							
	Covariance Parameter Estimates						
		Standa	rd Z				
Cov	Parm Subje	ct Estima	ate Error	Value	Pr Z		
UN(1,1) Institu	ion 0.0223	<u>0.01673</u>	1.33	0.0912		
UN(2	2,1) Institut	tion -0.0079	99 0.006420) -1.25	0.2131		
UN(2	2,2) Institu	ion 0.0050	45 0.00295	8 1.71	0.0440		
UN(3,1) Institu	tion -0.0006	64 0.002912	2 -0.22	0.8273		
UN(3,2) Institu	10n - 0.000	/4 0.001330) -0.55	0.5799		
UN(.	3,3) Institu	10n 0.0013	53 0.00093 0.005212	9 1.44	0.0747		
Resi		0.2435	0.005213 2	+6./2 <.	0001		
SPSS Output	[Damamatang						
Covariance	arameters	Fetimat	os of Coveri	anco Parai	notors(9)		
		Estimat				05% Confide	nco Interval
						Jower	Linnor
Doromotor		Ectimate	Std Error	Wold 7	Sig	Bound	Bound
Parallel			005212	46 710	51g.	222540	252091
Intercent	IINI(1,1)	.243546	.005213	40./19	.000	.233540	.253981
	$\frac{\text{UN}(1,1)}{\text{UN}(2,1)}$.022314	.016/31	1.334	.182	.005155	.09/009
PROG OPE	= UN $(2,1)$	00/993	.006420	-1.245	.213	020575	.004590
[subject =	$\frac{\text{UN}(2,2)}{\text{UN}(2,1)}$.005045	.002958	1./06	.088	.001599	.015919
Institution	UN(3,1)	000636	.002912	218	.827	006343	.005072
monution	UN(3,2)	000736	.001330	554	.580	003342	.001870
	UN (3,3)	.001354	.000939	1.442	.149	.000348	.005272
a Dependent	Variable: INT	ERACTION	Interaction S	Scale: Stu c	q16k,l,m,n,o	•	
STATA Out	put						
Dandam off	aata Daramata	a Estimat	o Std Em	[050/ Co	• nf Intomvoll		
Kandom-en		s Estimat	e Stu. EII.	[93% CO	m. mervarj		
institution. II	nstructured				-		
var	clarity)	005038	0029566	00159	53 015914	<mark>42</mark>	
var(prog o~n)	.001353	36 .0009383	.00034	79 .00526	67	
va	r(cons)	.022313	.0167345	.00513	07 .09703	93	
cov(clari	ty,prog o~n)	000732	26 .00133	003339	3 .001874	1	
cov(cla	rity, cons)	007983	.0064177	02056	18 .00459	51	
cov(pro	g_o~n,_cons)	000643	56 .0029154	00635	.00506	86	
	+				-	_	
var(Residual)	.243588	.0052139	.233580	.254024	19	
					-		

The fixed effects for the complete model can be found under the "Solution for Fixed Effects" in SAS output, "Estimates of Fixed Effects" in SPSS output, and "Interaction" in STATA output (Figure 21). All the fixed effects are significant at an alpha of .05 (p-values for all predictor variables are less than .05); thus all variables are kept in the final model. For this example, the interpretation of the intercept (γ_{00}) is the average instructor interaction is .0007987 for institutions with the Bachelor's Carnegie Classification when all the continuous variables are set equal to zero. The instructor interaction increases .3662 for every one point increases in student's perception of clarity after controlling for the other predictor variables. The largest influence on instructor interaction is the school's Carnegie Classification, which decreases .4450 when the school is a research extensive when compared to a Bachelor's institution, holding other variables constant.

Figure 21:	Parameter	Estimates fo	or Com	olete	Model
1 15ul c 21.	I al ameter	Lotinates 10		piece .	1110uci

SAS Output	
Solution for Fixed Effects	
Standard	
Effect carn_cat Estimate Error DF t Value $Pr > t $	
Intercept 0.007987 0.09893 35 0.08 0.9361	
q10bround 0.02425 0.007176 4418 3.38 0.0007	
CLARITY 0.3662 0.01860 4418 19.68 <.0001	
COLLAB 0.2796 0.01231 4418 22.72 <.0001	
PROG_OPEN 0.2359 0.01192 4418 19.79 <.0001	
carn_cat 1 -0.4450 0.07972 35 -5.58 <.0001	
carn_cat 2 -0.2442 0.1090 35 -2.24 0.0315	
carn_cat 3 -0.2724 0.09754 35 -2.79 0.0084	
carn_cat 4 0	
Type 3 Tests of Fixed Effects	
Num Den	
Effect DF DF F Value $Pr > F$	
q10bround 1 4418 11.42 0.0007	
CLARITY 1 4418 387.44 <.0001	
COLLAB 1 4418 516.20 <.0001	
PROG_OPEN 1 4418 391.73 <.0001	
carn cat 3 35 12.81 <.0001	

Figure 21: Parameter Estimates for Complete Model (con't)

SPSS Output

Fixed	Effects
Fixed	Effects

Fixed Effects Type III Tests of Fixed Effects(a)							
Г		Numer	ator Den	ominator	Effects(d)		
	Source	df		df	F	Sig.	
T T	Intercept	1	1	113.807	12.281	.001	
	q10bround		1	4430.797	11.418	.001	
	CLARITY		1	30.754	387.435	.000	
	COLLAB		1	4414.609	516.199	.000	
	PROG_OPEN		1	43.537	391.713	.000	
	carn_cat		3	40.175	12.814	.000	
a Dependent Vari	iable: INSTRU	CTORIN	TERACTIO	N Interacti	on Scale: St	tu q16k,l,m,n,o	·-
		<u> </u>	Estimates of	Fixed Effe	ects(b)		
						95% Confide	nce Interval
		Std.				Lower	Upper
Parameter	Estimate	Error	df	t	Sig.	Bound	Bound
Intercept	.007990	.098931	110.005	.081	.936	188069	.204048
ql0bround	.024247	.007176	4430.797	3.379	.001	.010179	.038315
CLARITY	.366184	.018604	30.754	19.683	.000	.328229	.404139
COLLAB	.2/9613	.012307	4414.609	22.720	.000	.255485	.303/40
FROG_OPEN	.235901	.011919	43.33/	19.792	.000	.2118/3	.239930
$\begin{bmatrix} carn cat=2.00 \end{bmatrix}$	443040	100044	47.308	-3.383	.000	003390	284702
$\begin{bmatrix} carn cat=2.00 \end{bmatrix}$	244238	.109044	45.071	-2.240	.030	404133	024341
$\begin{bmatrix} carn cat=4 00 \end{bmatrix}$	272433	0,097540	40.709	-2.195	.008	408095	070177
a This parameter	is set to zero b	ecause it i	s redundant	•	•	•	· .
b Dependent Var	iable: INSTRU	CTORIN'	TERACTIC	N Interacti	ion Scale [.] S	tu a16k l m n o)
STATA Output		CICILII	<u>I Diule IIe</u>			u q 1011,1,11,11,0	•
interaction	Coef. Std.	Err. z	P> z [9:	5% Conf. Ir	nterval]		
q10bround .0	024235 .00717	64 3.38	8 0.001	.0101696	.0383004		
clarity .3658772 .0185964 19.67 0.000 .3294289 .4023255							
collab .2	collab .2796545 .0123085 22.72 0.000 .2555302 .3037788						
prog_open .2	358166 .0119	179 19.	79 0.000	.2124579	.2591754		
$carn_cat_1 4$	449/26 .079/	291 -5.3	58 0.000 24 0.025	601238/	288/065		
$\operatorname{carn}_{\operatorname{carn}} \operatorname{cat}_2 =2$	-++1312 .1090 272286 0075	524 -2.2 187 _27	24 0.023 19 0.005	45/8/	0303923		
$cons \perp 0$	088802 0989	-2.7 372 0.0	9 0.003	- 1850331	2027936		
			., 0.,20		.2027930		

The SAS and SPSS information criteria¹⁷ output are all equal for the -2 restricted log likelihood, Akaike's information criterion (AIC), and Hurvich and Tasi's Criterion (AICC) (Figure 22). The

¹⁷ For Stata, use the command "estat ic" after running the xtmixed command.

Schwarz's Bayesian Criterion (BIC) is slightly different and may be to differences in the software's algorithms. The fit statistics will be useful when comparing models involving instructor interaction (Table 4). The -2 restricted log likelihood, AIC, AICC, and BIC are smallest for the complete, which implies the complete model is best when compared to other models examined.

	Figure 22. Information Criteria for the Complete Model							
SAS Output								
Fit Statistics								
-2 Res Log Li	kelihood 6495.	.2						
AIC (smaller	is better) 6509.2							
AICC (smalle	r is better) 6509.	2						
BIC (smaller	is better) 6520.9							
SPSS Output								
-	Information Cr	iteria(a)						
	-2 Restricted Log	(405.010						
	Likelihood	6495.212						
	Akaike's							
	Information 6509 212							
	Criterion (AIC)							
	Hurvich and							
	Tsai's Criterion	6509 237						
	(AICC)	00091207						
	Bozdogan's							
	$\begin{array}{c} \text{Dozacigans} \\ \text{Criterion} (CAIC) \\ \end{array} \begin{array}{c} 6561.021 \\ \end{array}$							
	Schwarz's							
Bayesian 6554 021								
Criterion (BIC)								
The information	aritaria ara dignlava	d in amollo	l r is hottor forms					
	CILIERIA are displaye	a in smallel	(-IS-Detter IOTIIS.					
a Dependent Variable	INTERACTION I	nteraction S	scale: Stu q16k,l,m,n,o.					

Figure 22: Information Criteria for the Complete Model

Table 8: Comparing	Unconditional Model ar	nd Model with only	y Level-2 Predictors
--------------------	------------------------	--------------------	----------------------

Information Criteria	Unconditional Model	Model with only level-2 Predictors	Model with only level-1 Predictors	Complete Model
-2 Res Log Likelihood	8906.914	8877.489	7910.716	6495.212
AIC	8910.914	8881.489	7918.716	6509.212
AICC	8910.917	8881.492	7918.725	6509.237
CAIC	8925.720	8896.294	7948.327	6561.021
BIC	8923.720	8894.294	7944.327	6554.021

Comparing Variance Structures

Besides estimating the regression coefficients, the HLM method also estimates the second level model variances and the covariance between the second level models (i.e., the β 's). For β_{0i} , we want to examine whether the variance (τ_{00}) is significant between cluster units (e.g., j=cluster unit 1, cluster unit 2, ...) for the intercept. If the HLM model includes random slopes (β_{ij} , where $i = 1, 2, \dots$ and j=cluster unit 1, cluster 2, ...), the covariance among the random slopes and random intercept are estimated ($\tau_{01}, \tau_{02}, \ldots$). Examining the covariance between random coefficients provides insight on the relationship between variables at the second level of the model.

Most researchers are inclined to estimate all the variances and covariance among the random coefficients, hence specifying the unstructured covariance structure in their HLM procedure (Figure 23). When the model becomes complex, the number of variance-covariance parameters estimated increases by 2n for every new random level-1 predictor added to the model, which will increase computational processing time. Thus, imposing a covariance structure (e.g., simple/ diagonal, compound symmetry) may be necessary. In developing your HLM model, you may also notice that estimating the covariance is unnecessary, because they are not significant. This suggests that another covariance structure (such as simple) may be sufficient and may even improve your model's fit statistics. Figure 23 defines common covariance structures for HLM models involving subjects nested in organizational structures (e.g., Raudenbush and Bryk's (2002) math achievement model) and Figure 24 provides the software code to specify the covariance structures in SAS, SPSS and STATA. Figure 25 displays the SAS code for the instructor interaction example specifying each of these structures (see green highlight). Readers should know that other covariance structures exists for personal growth models (see Singer's (1998) opposite naming task) such as autoregressive and toeplitz. S

Туре	Matrix Structure	Assumption
Unstructured	$\begin{bmatrix} \sigma_{1}^{2} & \sigma_{21} & \sigma_{31} \\ \sigma_{21} & \sigma_{2}^{2} & \sigma_{32} \\ \sigma_{31} & \sigma_{32} & \sigma_{3}^{2} \end{bmatrix}$	All variances and covariance among the random intercept and random slopes assumed to be different. HLM procedure estimates n *n -1 parameters, where n is the number of random coefficients (random intercepts plus number of random slopes) in the model.
Simple/Diagonal	$\begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix}$	Only n random coefficients variances are estimated by the HLM. This structure assumes the covariance among the random coefficients is zero.
Compound Symmetry	$\begin{bmatrix} \sigma^2 + \sigma_1 & \sigma_1 & \sigma_1 \\ \sigma_1 & \sigma^2 + \sigma_1 & \sigma_1 \\ \sigma_1 & \sigma_1 & \sigma^2 + \sigma_1 \end{bmatrix}$	HLM procedure estimates two (2) parameters and assumes the random coefficients' variances are equal and the covariance among the random coefficients is equal.

\ \	/	T.	1	0	/
Figure	23	:	Covariance	Structur	e

Software	Unstructured	Simple	Compound Symmetry
SAS	type = un	type = simple	type =cs
SPSS	COVTYPE(UN)	COVTYPE(DIAG)	COVTYPE(CS)
STATA	covariance(unstructured)	covariance(independent)	covariance(exchangeable)

Figure 25: SAS Software Code for Different Covariance Structures in SAS for Instructor Interaction Example

Unstructured	proc mixed data=ABET noclprint covtest noitprint;
	class Institution carn_cat;
	model InstructorInteraction = q10bround clarity collab
	prog_open carn_cat /solution ddfm=bw;
	random intercept clarity prog_open /sub=Institution
	type=un;
	run;
Simple/Diagonal	proc mixed data=ABET noclprint covtest noitprint;
	class Institution carn_cat;
	model InstructorInteraction = q10bround clarity collab
	prog_open carn_cat /solution ddfm=bw;
	random intercept clarity prog open /sub=Institution
	type=simple;
	run;
Compound Symmetry	proc mixed data=ABET noclprint covtest noitprint;
	class Institution carn_cat;
	model InstructorInteraction = q10bround clarity collab
	prog_open carn_cat /solution ddfm=bw;
	random intercept clarity prog_open /sub=Institution
	type=cs;
	run;

Results

The fit statistics determine the best model (Figure 26), when comparing models. We see that the compound symmetry covariance structure is best since the AIC, AICC, and BIC are smallest when compared to the simple/diagonal and unstructured model.

Figure 20. Information Criteria		
Unstructured Covariance Structure		
Fit Statistics		
-2 Res Log Likelihood	6495.2	
AIC (smaller is better)	6509.2	
AICC (smaller is better)	6509.2	
BIC (smaller is better)	6520.9	
Simple/Diagonal Covariance Structure		
Fi	t Statistics	
-2 Res Log Likelihood	6500.2	
AIC (smaller is better)	6508.2	
AICC (smaller is better)	6508.2	
BIC (smaller	is better)	6514.8
Compound Symmetry Covariance Structu	ire	
Fit Statistics		
-2 Res Log Likelihood	6499.3	
AIC (smaller is better)	6505.3	
AICC (smaller is better)	6505.3	
BIC (smaller is better)	6510.3	

Figure 27 is the covariance parameter estimates of the different models. When examining the unstructured covariance structure model, we see that all three covariance are not significant at an alpha of .05 (p-values are .2131 for UN(2,1), .8273 for UN(3,1) and .5799 for UN(3,2)). In other words, I fail to reject the null hypothesis (H_0 : covariance is equal to zero) and conclude that the covariance may be zero. This suggests that a simple/diagonal covariance structure may be more appropriate for this model, which assumes that the covariance among the random coefficients (in this example, the intercept, clarity, and program openness) is zero. Assuming a zero covariance, suggests that the random coefficients are independent of each other, i.e., no relationships exists between the random intercept and the random slopes. For this model, if a negative covariance between the clarity and program openness slope is significant (which it is not in this case), then as the slope clarity increases, the slope for program openness would decrease. If a positive covariance exists, then as the slope of clarity increases, the slope for program openness would also increase. Thus, even though the compound symmetry model has a better-fit statistic than simple/diagonal, the model may not be appropriate since the covariance for this model is not significant at an alpha of .05 (CS p-value = .3179).

Figure 27: Estimates of Covariance Farameters

Unstru	ctured Cov	ariance Stru	cture				
			Covariance	Parameter	Estimate	s	
			Standard	Ζ			
	Cov Parm	Subject	Estimate	Error	Value	Pr Z	
	UN(1,1)	Institution	0.02231	0.01673	1.33	0.0912	
	UN(2,1)	Institution	-0.00799	0.006420	-1.25	0.2131	
	UN(2,2)	Institution	0.005045	0.002958	1.71	0.0440	
	UN(3,1)	Institution	-0.00064	0.002912	-0.22	0.8273	
	UN(3,2)	Institution	-0.00074	0.001330	-0.55	0.5799	
	UN(3,3)	Institution	0.001353	0.000939	1.44	0.0747	
	Residual	0	.2435 0.0	05213 46	5.72 <	.0001	
Simple	/Diagonal C	ovariance S	tructure				
			Covariance	Parameter	Estimate	s	
			Standard	Z			
	Cov Parm	Subject	Estimate	Error	Value	Pr Z	
	Intercept	Institution	0.001538	0.004759	0.32	0.3732	
	CLARITY	Institutio	n 0.00113	9 0.0005	86 1.9	0.025	<mark>;9</mark>
	PROG_OP	EN Institut	tion 0.000	626 0.000	0457	1.37 0.0	1 <mark>853</mark>
	Residual	0	.2446 0.0	05220 46	6.86 <	.0001	
Compo	ound Symmo	etry Covaria	nce Struct	ure			
		Covariance	Parameter	Estimates			
			Standard	Z			
	Cov Parm	Subject	Estimate	Error	Value	Pr Z	
	Variance	Institution	0.002418	0.001571	1.54	0.0619	
	CS I	nstitution -	0.00061 0	.000613	-1.00	0.3179	
	Residual	0	.2443 0.0	05218 46	5.81 <	.0001	

The compound symmetry model also assumes that the variances between the second level models are equal (i.e., $\tau_{00} = \tau_{11} = \tau_{22}$). However, from the unstructured covariance structure estimates, we see that the variances between the random coefficients appear to be different (UN(1,1) = intercept variance = .2231; UN(2,2) = clarity's slope variance = .005045; and UN(3,3) = program openness' slope variance = .006045). This suggests that the compound symmetry model may not be appropriate. The simple/diagonal variance estimates for intercept variance (τ_{00}), clarity's slope variance (τ_{11}), and program openness' slope variance (τ_{22}) are .001538, 001139, and .000626. Even though, the estimates appear to be different, the significance of these parameters are consistent (i.e., only clarity is significant).

For all three models, the residual variance estimates, the σ^2 for the HLM model, are relatively the same (.2435, .2446, and .2443 – see blue highlight in Figure 27). The unstructured covariance structure may be best because the residual variance is the smallest; however, nothing is gained or lost when choosing between the three types of covariance structures.

When examining the regression coefficient estimates (i.e., the γ 's in the HLM model) between the three covariance structure models (Table 9, see Figure 28 for complete output), only the intercept estimates appear to be different (.007987, .03469, and .02716). The estimates for the intercept vary due to the restrictions placed on the covariance (i.e., set to zero for simple or all covariance between parameters equal in compound symmetry). Selecting a covariance matrix structure appears to have little influence on estimating the regression coefficients.

	Unstructured	Simple/Diagonal	Compound Symmetry
Intercept	.007987	.03469	.02716
Q10bround	.02425	.02447	.02424
Clarity	.3662	.3618	.3614
Collaboration	.2796	.2788	.2788
Program Openness	.2359	.2357	.2384
Carnegie Classification (1)	4450	4554	4542
Carnegie Classification (2)	2442	2661	2699
Carnegie Classification (3)	2724	2734	2689
Carnegie Classification (4)	0	0	0

Table 9: Comparison of Regression Coefficient between Covariance Structures

For this model, I would mostly likely utilize the simple/diagonal covariance structure, because of the smaller fit statistics (AIC, AICC, BIC) compared to the unstructured model and the covariance among random coefficients are not significant. The compound symmetry does not appear appropriate because of the variances among the random coefficients do not appear to be equal and the covariance between the random coefficients are not significant.

Figure 28: Parameter Estimates for Model

Unstructured Covariance Structure
Solution for Fixed Effects
Standard
Effect carn_cat Estimate Error DF t Value $Pr > t $
Intercept 0.007987 0.09893 35 0.08 0.9361
q10bround 0.02425 0.007176 4418 3.38 0.0007
CLARITY 0.3662 0.01860 4418 19.68 <.0001
COLLAB 0.2796 0.01231 4418 22.72 <.0001
PROG_OPEN 0.2359 0.01192 4418 19.79 <.0001
carn_cat 1 -0.4450 0.07972 35 -5.58 <.0001
carn_cat 2 -0.2442 0.1090 35 -2.24 0.0315
carn_cat 3 -0.2724 0.09754 35 -2.79 0.0084
carn_cat 4 0
Type 3 Tests of Fixed Effects
Num Den
Effect DF DF F Value $Pr > F$
q10bround 1 4418 11.42 0.0007
CLARITY 1 4418 387.44 <.0001
COLLAB 1 4418 516.20 <.0001
PROG_OPEN 1 4418 391.73 <.0001
carn cat 3 35 12.81 <.0001

Solution for Fixed Effects
Standard
Effect carn_cat Estimate Error DF t Value $Pr > t $
Intercept 0.03469 0.09694 35 0.36 0.7226
q10bround 0.02447 0.007181 4418 3.41 0.0007
CLARITY 0.3618 0.01489 4418 24.29 <.0001
COLLAB 0.2788 0.01231 4418 22.65 <.0001
PROG_OPEN 0.2357 0.01083 4418 21.77 <.0001
carn_cat 1 -0.4554 0.08321 35 -5.47 <.0001
carn_cat 2 -0.2661 0.1141 35 -2.33 0.0256
carn_cat 3 -0.2734 0.1021 35 -2.68 0.0112
carn_cat 4 0
Type 3 Tests of Fixed Effects
Num Den
Effect DF DF F Value $Pr > F$
q10bround 1 4418 11.61 0.0007
CLARITY 1 4418 590.20 <.0001
COLLAB 1 4418 512.83 <.0001
PROG_OPEN 1 4418 474.02 <.0001
carn_cat 3 35 12.10 <.0001
Compound Symmetry Covariance Structure
Solution for Fixed Effects
Standard
$\begin{array}{c} \text{Standard} \\ \text{Effect} & \text{carn_cat} \text{Estimate} \text{Error} \text{DF} t \text{ Value} \text{Pr} > t \\ \text{Let } & t \in \mathbb{R} \\ \text{Standard} & t \in$
StandardEffectcarn_catEstimateErrorDFtValue $Pr > t $ Intercept0.027160.09469350.290.77591010.021210.00212120.00212120.0002716
Standard Effect carn_cat Estimate Error DF t Value Pr > $ t $ Intercept 0.02716 0.09469 35 0.29 0.7759 q10bround 0.02424 0.007176 4418 3.38 0.0007
StandardEffectcarn_catEstimateErrorDFtValue $Pr > t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
StandardEffectcarn_catEstimateErrorDFtValue $Pr > t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
StandardStandardEffectcarn_catEstimateErrorDFtValue $Pr > t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
StandardEffectcarn_catEstimateErrorDFt Value $Pr > t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
StandardEffectcarn_catEstimateErrorDFt Value $Pr > t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
StandardEffectcarn_catEstimateErrorDFt Value $Pr > t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
StandardEffectcarn_catEstimateErrorDFt Value $Pr > t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
StandardEffectcarn_catEstimateErrorDFt Value $Pr > t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
StandardEffectcarn_catEstimateErrorDFt Value $Pr > t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
StandardEffectcarn_catEstimateErrorDFt Value $Pr > t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
StandardEffectcarn_catEstimateErrorDFt Value $Pr > t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
StandardStandardEffectcarn_catEstimateErrorDFt ValuePr > $ t $ Intercept0.027160.09469350.290.7759q10bround0.024240.00717644183.380.0007CLARITY0.36140.01563441823.12<.0001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Centering

Raudenbush and Bryk (2002) offer three suggestions in the location of the level-1 predictor variables: the natural X metric (also refer to as the raw score), centering around the grand mean, and centering around the group mean (also refer to as centering within context). Utilizing our engineering example, Equation 49 is an example utilizing the natural X metric for our model. The natural score maintains the raw measure (i.e., no transformations applied to the variable's values).

InstructorInteraction_{ij} =
$$\beta_{0j} + \beta_{clarityj} * clarity + r_{ij}$$
 (49)

Grand mean centering involves calculating the mean of all the subjects within the study and subtracting that value from the original measure. This procedure would center the mean to equal to zero. For our engineering example, I would calculate the students' mean on their perception of clarity and then subtract that value from the original clarity measure.

InstructorInteraction_{ij} =
$$\beta_{0j} + \beta_{clarityj} * (clarity - clarity_{..}) + r_{ij}$$
 (50)

Centering around the group mean entails calculating the mean of the subjects score within a cluster unit and then subtracting that value from all the subjects within that group (Equation 50). For our example, we found the mean clarity score within an institution (e.g., Georgia Tech) and then subtract that value from all Georgia Tech students' clarity score. This would be done for the other 38 institutions in our study.

InstructorInteraction_{ij} =
$$\beta_{0j} + \beta_{clarityj} * (clarity - clarity_j) + r_{ij}$$
 (51)

Centering (either around the grand or the group) versus maintaining the natural metric provides a more meaningful interpretation of the fixed intercept term (γ_{00}) (Singer, 1997); however, Kreft, de Leeuw, and Aiken (1995) conclude that there is no statistically correct choice in where the level-1 predictor is located. They found that the natural X metric and the grand mean location produce equivalent statistical models (i.e., models that have the same expectations and dispersions). Even though the regression coefficients between the two models may be different, an equivalent model implies a one-to-one transformation exist so that model can be converted to the other. The advantage of centering (either grand mean or group mean) though does remove a large portion of the confounding slope and intercept variance (Kreft, de Leeuw, & Aiken, 1995). Statistically, utilizing a group-mean centering provides a different model from the natural X metric and grand mean centering; thus, the decision in centering should depend on the researcher's theoretical model. The suggestion though is to center (either grand mean or group mean) the variable to provide a more meaningful interpretation of the fixed intercept term and to ease estimation computations and stability (Kreft, de Leeuw, & Aiken, 1995).

Contextual Models

Contextual models include the group mean as a variable in the level-2 model (Burstein, 1980). This implies the predictor has a within- and between effect on the dependent measure. An example is Raudenbush and Bryk's (2002) math achievement example, where they include the

school district's average socio economic status at the second level. The implication is that not only does a student's socio economic status (within- effect), but also the relative wealth of the student's school district (between-effect), measured by the mean socio economic status within the school district, influences his/her match achievement. Including the group mean as a level-2 predictor provides contextualizes the individual's situation. The choice of centering within the level-1 model influences the interpretation of the regression coefficients. Group-mean centering decomposes the effects into within- and between cluster units; while grand mean centering provides the compositional (the sum of the within – and between cluster unit effects) and the within- cluster effect (see Table 5.11 on p. 140 in Raudenbush and Bryk (2002)).

The decision to include the group mean as a level-2 predictor depends on the researcher's theoretical model in whether the variable's context influences the dependent measure (Kreft, de Leeuw, & Aiken, 1995). For example, when developing a contextual HLM models for student success, SAT scores are often included as a level-1 predictor. The inclusion of the SAT group mean as a level-2 predictor depends on whether the researcher also believes success is a school effect (Kreft, de Leeuw, & Aiken, 1995). The school effect is the belief that having peers of similar ability also influences student's success. As noted above, including the group mean as a level-2 predictor partitions the variable's effects into within- and between cluster units; thus, the researcher in developing a contextual model must be able to justify that the predictor would have a between cluster effect.

Centering in SAS, SPSS, and STATA

Unlike HLM6, the mixed linear procedures in SAS, SPSS, and STATA do not offer an option of centering a variable. If you want to center a variable, the center variable must be created. The grand mean centered variable is computed by calculating the variable's mean and then creating a new variable (e.g., GrandMeanCenterVariable) by subtracting the grand mean from the original variable.

My suggestion in creating a group-mean centered variable is first calculate the group-mean for the variable (SAS use proc means, SPSS use the MEANS procedure, and STATA use "tab (variable) summarize(cluster unit)"). Once the group-mean is tabulated, create a group-mean variable (GroupMeanVariable), which will be useful, if you decide to include this variable as a level-2 predictor. Figure 29 provides one method of creating the GroupMeanVariable. Then create a group-mean centered variable (e.g., GroupMeanCenterVariable) by subtracting the group mean variable from the original variable.

Figure 29: Creating a Group Mean Variable in SPSS

RECODE ClusterUnit (ClusterUnit1=Cluster Unit 1's Mean) (ClusterUnit2=Cluster Unit 2's Mean) ... (ClusterUnit j=Cluster Unit j's Mean) INTO GroupMeanVariable . EXECUTE .

Conclusion

Figure 30 provides a guide in building an HLM. There is no statistical reasoning to the order of these steps. Unlike OLS regression, the mixed procedure does not have a method option (e.g., stepwise, forward or backward) in creating a parsimonious model with only significant terms. Thus, the first step in identifying possible variables for an HLM is to develop an OLS regression model with only significant terms (Step 1). Since, OLS regression underestimates the size of the standard errors of the regression coefficients; thus, significant terms in the OLS model may be insignificant in the HLM and non-significant terms in the OLS regression model will be non-significant terms in HLM.

The next step (Step 2) is to evaluate the unconditional model, which partitions the variance into between and within cluster units. With the variance partition in this fashion, the intraclass correlation (ρ) is calculated (Step 3). The within and between variances will be used as baselines when evaluating predictors and the completeness of the final model (e.g., proportion reduction in variance measures). You may decide that the OLS regression model suffices, because the intraclass correlation is small enough (5%); that accounting for organizational characteristics is not worthwhile. However, if the intraclass correlation is large enough, then Step 4 is creating a model with only level-2 predictors.

Step 5 evaluates the significance of the fixed effects of the model (i.e., should the level-2 predictor stay in model) and whether the variance at the between cluster units is adequately explained (i.e., is the between cluster units variance, τ_{00} , significant? If not, other level-2 predictor variables might improve the model). The significant level-2 predictors are kept for the complete and final model.

Step 6 is building the random-coefficient model, or developing a model with level-1 predictor variables. The main objective of Step 7 is to evaluate the level-1 predictor (i.e., is the fixed effect significant?), determine whether level-1 predictor varies between institutions (i.e., is the variance of the slope significant? If yes, the variables needs to be modeled as a random effect), and reduce the within cluster unit variance (σ^2). The significant level-1 predictors are kept for the complete and final model.

Step 8 combines the information found in Step 5 and Step 7 to develop the final model. The complete model incorporates the significant level-2 and level-1 predictors and any significant interactions between them. Step 9 evaluates the model by examining measures such as proportion reduction in variance measures and the significance of the fixed effects.

If the model has difficulty in converging to a final estimate, the researcher may choose to change his/her covariance structure from an unstructured to a simple/ diagonal. Other options to help with convergence include centering variables or incorporating group means (contextual model) as a level-2 predictor.

Figure 30: Creating a HLM Model

References

Burstein, L. (1980). The analysis of multilevel data in educational research and evaluation. *Review of Research in Education*, *8*, 158-233.

Ethington, Corinna A. (1997). A hierarchical linear modeling approach to studying college effects. In J. Smart (Ed.), *Higher Education: Handbook of Theory and Research, Volume 12.* New York: Agathon Press.

Goldstein, H. I. (1986). Multilevel mixed linear model analysis using iterative generalized least squares. *Biometrika*, **73**, 43-56.

Kreft, I.G.G., de Leeuw, J., & Aiken, L. (1995). The effect of different forms of centering in hierarchical linear models. *Multivariate Behavioral Research*, *30*, 1-22.

Lattuca, L. R., Terenzini, P. & Volkwein, J. F. (2006). Engineering change: A study of the impact of EC 2000. Baltimore, MD: ABET Inc.

Mason, W. M., Wong, G. M., & Entwistle, B. (1983). Contextual analysis through the multilevel linear model. In S. Leinhardt (Ed.). *Sociological Methodology*, 72-103. San Francisco, CA: Jossey-Bass

Raudenbush, Stephen W. and Bryk, Anthony S. (2002). Hierarchical linear models: Applications and data analysis methods. (2nd edition) Thousands Oaks, CA: Sage Publications

Rosenberg, B. (1973). Linear regression with randomly dispersed parameters. *Biometrika* **60**, 61-75.

Porter, S. (2005). What can multilevel models add to institutional research? In M. A. Coughlin (Ed.), *Applications of intermediate/advanced statistics in institutional research* (pp.110-131). Tallahassee, FL: Association for Institutional Research

Singer, Judith D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and Individual growth models. *Journal of Educational and Behavioral Statistics*, 23 (4): 323-355.

Volkwein, J. F., Lattuca, L. R., Terenzini, P. T., Strauss, L. C. and Sukhbaatar, J. (2004). Engineering change: A study of the impact of EC2000. *International Journal of Engineering Education*, 20(3), 318-328.

	Mean	Std. Dev	Skewness (Std Error)	Kurtosis (Std Error)
In-class & Out-of Class Activities				
Clarity and Organization	3.1053	.5785 7	243 (0.37)	189 (.073)
Collaborative Learning	2.8974	.6747 9	297 (0.37)	507 (.073)
Instructor Interaction and Feedback	2.2077	.6862 0	431 (.037)	158 (.073)
Program Openness to Ideas and People	2.6243	.8625 6	.421 (.037)	304 (.073)
Program Diversity Climate	4.3311	.5839 7	-1.439 (.037)	2.742 (.073)
Student Characteristics				
Age	19.11	3.317	4.222 (.037)	22.106 (.073)
Family income	5.0	2.170	.195 (.037)	652 (.073)
SAT Verbal	597.98	86.317	.007 (.037)	.044 (.073)
SAT Math	676.62	72.246	363 (.037)	.210 (.073)
SAT Overall	1274.601	137.05	081 (.037)	.020 (.073)
Overall High School GPA	5.64	.707	-2.430 (.037)	6.839 (.073)

APPENDIX 1: Descriptive Statistics of Individual Students

The following are the variable descriptions (Lattuca, Terenzini, Volkwein, 2005).

Student Reports of their In-class and Out-of-class Activities Relevant to Engineering

Clarity and Organization Scale: An individual student's score on a 3-item scale (where 4 = almost always, to 1 = almost never) assessing how often things happened in their classes. Constituent items: "Assignments and class activities were clearly explained;" "Assignments, presentations, and learning activities were clearly related to one another;" "Instructors made clear what was expected of students in the way of activities and effort." (1994 Alpha = .82, 2004 Alpha = .82)

Collaborative Learning Scale: An individual student's score on a 7-item scale (where 4 = almost always, to 1 = almost never) assessing how often things happened in their classes. Constituent items: "I worked cooperatively with other students on course assignments;" "Students taught and learned from each other;" "We worked in groups;" "I discussed ideas with my classmates (individuals or groups);" "I got feedback on my work or ideas from my classmates;" "I interacted with other students in the course outside of class;" "We did things that required students to be active participants in the teaching and learning process." (1994 Alpha = .91, 2004 Alpha = .90)

Instructor Interaction and Feedback Scale: An individual student's score on a 5-item scale (where 4 = almost always, to 1 = almost never) assessing how often things happened in their classes. Constituent items: "Instructors gave me frequent feedback on my work;" "Instructors

gave me detailed feedback on my work;" "Instructors guided students' learning activities rather than lecturing or demonstrating the course material;" "I interacted with instructors as part of the course;" "I interacted with instructors outside of class (including office hours, advising, socializing, etc.)." (1994 Alpha = .87, 2004 Alpha = .87)

Program Openness to Ideas and People: An individual student's score on a 4-item scale (where 4 = almost always, to 1 = almost never) assessing how often things happened in the program both in-class and out-of-class. Constituent items: "My engineering courses encouraged me to examine my beliefs and values;" "My engineering courses emphasized tolerance and respect for differences;" "My department emphasizes the importance of diversity in the engineering workplace;" "My engineering friends and I discussed diversity issues." (1994 Alpha = .75, 2004 Alpha = .74)

Program Diversity Climate: An individual student's score on a 4-item scale assessing how often things happened in the program when out-of-class. Constituent items: "In my major, I observed the use of offensive words, behaviors, or gestures directed at students because of their identity" (5 = strongly disagree, to 1 = strongly agree); "I was harassed or hassled by others in my major because of my identity" (5 = strongly disagree, to 1 = strongly disagree, to 1 = strongly agree); "I know some students who feel like they don't fit in this department because of their identity" (5 = strongly agree); "The faculty in my department are committed to treating all students fairly(5 = strongly agree, to 1 = strongly disagree)." (1994 Alpha = .57, 2004 Alpha = .57)

Students' Characteristics

Age: Actual years

Family income: 9-point scale, where 1 = below \$20,000 and 9 = more than \$150,000

SAT scores: Actual scores on both the math and verbal sections of the SATs

Overall high school GPA: 6-point scale, where 1 = below 1.49 (below C-) and 6 = 3.5 to 4.0 (A- to A) *Overall college GPA:* 6-point scale, where 1 = below 1.49 (below C-) and 6 = 3.5 to 4.0 (A- to A)

Characteristic	Value	Count
Gender	Female	1095
	Male	3366
Transfer status	Transfer	951
	Non-transfer	3510
US citizen	No	514
	Yes	3947
Mothers highest education	High School diploma, GED, or less	1017
	Some College (including Associate's Degree)	1064
	Bachelor's degree	1529
	Advanced degree	851
Father's highest education	High School diploma, GED, or less	852
	Some College (including Associate's Degree)	859
	Bachelor's degree	1436

	Advanced degree	1314
Employment during college	No	1667
	Yes	2794
Months spent in a co-op/intern	None	1803
	1-4	743
	5-8	699
	9-12	595
	More than 12 months	621
Months Spent in a study abroad	None	4010
	1-4	339
	5-8	63
	9-12	34
	More than 12 months	15

Months spent traveling abroad	None	3327
	1-4	941
	5-8	114
	9-12	36
	More than 12 months	43
Months spent participating in a design	None	2690
project	1-4	999
	5-8	318
	9-12	188
	More than 12 months	266
Activeness in a professional society or	Not at All	1637
Engineering	Somewhat	1642
	Moderately	582
	Highly	600

Institution	Number of Students
Cal State Polytechnic	129
Cal State, Sacramento	46
Case Western	79
Clemson	160
Cornell	144
Embry- Riddle	37
Georgia Tech	138
Howard	21
Iowa State	189
North Carolina AT&T	42
South Dakota	78
Syracuse	44
Ohio State	349
University of Texas Arlington	116
Tri-State	38
UCLA	80
USMA	48
University of Florida	186
University of Illinois, Chicago	136
University of Michigan	182
University of Missouri, Columbia	67
Notre Dame	104
University of Texas, Austin	330
University of the Pacific	14
Western Michigan	67
Worcester	110
Youngstown State	39
Illinois Institute of Technology	114
Lehigh University	121
Princeton	40
University of Arkansas	52
Temple	28
Union College	31
Arizona State	129
Marquette	83
Purdue	278
Virginia Tech	135
Texas A&M	348
MIT	129

APPENDIX 2: Descriptive Statistics of Organization Characteristics

Characteristic	Value	Count
Type of Control	Public	24
	Private	15
NSF Coalition Participation	Member of Coalition	15
	Not a coalition member	24
EC2000 review Schedule	Early (1998-2000)	
	On-time (2001-2003)	14
	Late (2004-2006)	9
Carnegie Classification	Carnegie Research Extensive	27
	Carnegie Research Intensive	3
	Carnegie Masters	5
	Carnegie Bachelors/ Other	4

Characteristic	Mean	Std.Dev	Skewness	Kurtosis
			(Std Error)	(Std Error)
Wealth	78171.77	12500.42	.494 (.378)	1.383 (.741)
Size	2177.59	1819.07	1.104 (.378)	009 (.741)

Wealth: Average salary of full professors in engineering *Size:* Number of undergraduate engineering degrees awarded in 2004.